High precision symplectic integrators for the Solar System

被引:0
作者
Ariadna Farrés
Jacques Laskar
Sergio Blanes
Fernando Casas
Joseba Makazaga
Ander Murua
机构
[1] Astronomie et Systèmes Dynamiques,Instituto de Matemática Multidisciplinar
[2] IMCCE-CNRS UMR8028,undefined
[3] Observatoire de Paris,undefined
[4] UPMC,undefined
[5] Universitat Politècnica de València,undefined
[6] Departament de Matemàtiques,undefined
[7] Institut de Matemàtiques i Aplicacions de Castelló,undefined
[8] Konputazio Zientziak eta A.A. saila,undefined
[9] Informatika Fakultatea,undefined
[10] UPV/EHU,undefined
来源
Celestial Mechanics and Dynamical Astronomy | 2013年 / 116卷
关键词
Symplectic integrators; Hamiltonian systems; Planetary motion; Jacobi coordinates; Heliocentric coordinates; Splitting sympletic methods;
D O I
暂无
中图分类号
学科分类号
摘要
Using a Newtonian model of the Solar System with all 8 planets, we perform extensive tests on various symplectic integrators of high orders, searching for the best splitting scheme for long term studies in the Solar System. These comparisons are made in Jacobi and heliocentric coordinates and the implementation of the algorithms is fully detailed for practical use. We conclude that high order integrators should be privileged, with a preference for the new \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(10,6,4)$$\end{document} method of Blanes et al. (2013).
引用
收藏
页码:141 / 174
页数:33
相关论文
共 74 条
  • [1] Candy J(1991)A symplectic integration algorithm for separable hamiltonian functions J. Comput. Phys. 92 230-256
  • [2] Rozmus W(1999)A hybrid symplectic integrator that permits close encounters between massive bodies Mon. Notices R. Astron. Soc. 304 793-799
  • [3] Chambers JE(2000)Pseudo-high-order symplectic integrators Astron. J. 119 425-2077
  • [4] Chambers JE(1998)A multiple time step symplectic algorithm for integrating close encounters Astrono. J. 116 2067-385
  • [5] Murison MA(2011)The INPOP10a planetary ephemeris and its applications in fundamental physics Celest. Mech. Dyn. Astron. 111 363-1693
  • [6] Duncan MJ(1990)On the fates of minor bodies in the outer solar system Astron. J. 100 1680-367
  • [7] Levison HF(1996)th-order operator splitting schemes and nonreversible systems SIAM J. Numer. Anal. 33 349-71
  • [8] Lee MH(1965)Pracniques: further remarks on reducing truncation errors Commun. ACM 8 40-120
  • [9] Fienga A(1991)Symplectic integrators and their application to dynamical astronomy Celest. Mech. Dyn. Astron. 50 59-291
  • [10] Laskar J(1996)Exhaustive search of symplectic integrators using computer algebra. Integration algorithms and classical mechanics Fields Inst. Commun. 10 103-62