The local regularity conditions for the Navier–Stokes equations via one directional derivative of the velocity

被引:0
作者
Zhengguang Guo
Petr Kucera
Zdenek Skalak
机构
[1] Huaiyin Normal University,School of mathematics and statistics
[2] Czech Technical University,undefined
[3] Prague,undefined
来源
Lithuanian Mathematical Journal | 2022年 / 62卷
关键词
Navier–Stokes equations; suitable solution; conditional regularity; regularity criteria; 35Q30; 76D05;
D O I
暂无
中图分类号
学科分类号
摘要
We study the local regularity of solutions to the Navier–Stokes equations. We show for a suitable weak solution (u, p) on an open space-time domain D that if ∂3u∈LtpLxqD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\partial}_3u\in {L}_t^p{L}_x^q(D) $$\end{document}, where 2/p + 3/q = 2 and q ∈ (27/16, 5/2), then the solution is regular in D.
引用
收藏
页码:333 / 348
页数:15
相关论文
共 29 条
  • [1] Caffarelli L(1982)Partial regularity of suitable weak solutions of the Navier–Stokes equations Commun. Pure Appl. Math. 35 771-831
  • [2] Kohn R(2010)Sufficient conditions for the regularity to the 3D Navier–Stokes equations Discrete Contin. Dyn. Syst. 26 1141-1151
  • [3] Nirenberg L(2011)Global regularity criterion for the 3D Navier–Stokes equations involving one entry of the velocity gradient tensor Arch. Ration. Mech. Anal. 202 919-932
  • [4] Cao C(2019)Some remarks about the possible blow-up for the Navier–Stokes equations Commun. Partial Differ. Equations 44 1387-1405
  • [5] Cao C(2017)On the critical one component regularity for 3-D Navier–Stokes system: General case Arch. Ration. Mech. Anal. 224 871-905
  • [6] Titi ES(2003)Backward uniqueness for parabolic equations Arch. Ration. Mech. Anal. 169 147-157
  • [7] Chemin J-Y(2017)Localized anisotropic regularity conditions for the Navier–Stokes equations J. Nonlinear Sci. 27 1725-1742
  • [8] Gallagher I(1976)Partial regularity of solutions to the Navier–Stokes equations Pacific J. Math. 66 535-552
  • [9] Zhang P(2018)A improved regularity criterion for the Navier–Stokes equations in terms of one directional derivative of the velocity field Bull. Math. Sci. 8 33-47
  • [10] Chemin J-Y(2014)Two new regularity criteria for the Navier–Stokes equations via two entries of the velocity Hessian tensor Appl. Math. Lett. 37 124-130