Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {Z}}}_2$$\end{document}-double cyclic codes

被引:3
作者
Joaquim Borges
Cristina Fernández-Córdoba
Roger Ten-Valls
机构
[1] Universitat Autònoma de Barcelona,Department of Information and Communications Engineering
关键词
Binary linear codes; Duality; -double cyclic codes; 94B60; 94B25;
D O I
10.1007/s10623-017-0334-8
中图分类号
学科分类号
摘要
A binary linear code C is a Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_2$$\end{document}-double cyclic code if the set of coordinates can be partitioned into two subsets such that any cyclic shift of the coordinates of both subsets leaves invariant the code. These codes can be identified as submodules of the Z2[x]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_2[x]$$\end{document}-module Z2[x]/(xr-1)×Z2[x]/(xs-1).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_2[x]/(x^r-1)\times {\mathbb {Z}}_2[x]/(x^s-1).$$\end{document} We determine the structure of Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_2$$\end{document}-double cyclic codes giving the generator polynomials of these codes. We give the polynomial representation of Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_2$$\end{document}-double cyclic codes and its duals, and the relations between the generator polynomials of these codes. Finally, we study the relations between Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {Z}}}_2$$\end{document}-double cyclic and other families of cyclic codes, and show some examples of distance optimal Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_2$$\end{document}-double cyclic codes.
引用
收藏
页码:463 / 479
页数:16
相关论文
共 29 条
  • [1] Abualrub T(2014)-additive cyclic codes IEEE Trans. Inf. Theory 60 1508-1514
  • [2] Siap I(2015)On Int. J. Comput. Math. 92 1806-1814
  • [3] Aydin N(2010)-additive codes Des. Codes Cryptogr. 54 167-179
  • [4] Aydogdu I(2016)-linear codes: generator matrices and duality IEEE Trans. Inf. Theory 62 6348-6354
  • [5] Abualrub T(2010)-additive cyclic codes, generator polynomials and dual codes Des. Codes Cryptogr. 56 43-59
  • [6] Siap I(1994)-linear codes: rank and kernel IEEE Trans. Inf. Theory 40 301-319
  • [7] Borges J(1996)The IEEE Trans. Inf. Theory 42 1594-1600
  • [8] Fernández-Córdoba C(2005)-linearity of kerdock, preparata, goethals and related codes Appl. Math. E-Notes 5 24-30
  • [9] Pujol J(2004)Cyclic codes and quadratic residue codes over Finite Fields Appl. 10 530-539
  • [10] Rifà J(2001)The structure of generalized quasi cyclic codes IEEE Trans. Inf. Theory 47 1773-1779