Integer-valued polynomials on valuation rings of global fields with prescribed lengths of factorizations

被引:0
作者
Victor Fadinger-Held
Sophie Frisch
Daniel Windisch
机构
[1] Universität Graz,Institute for Mathematics and Scientific Computing
[2] Technische Universität Graz,Department of Analysis and Number Theory (5010)
来源
Monatshefte für Mathematik | 2023年 / 202卷
关键词
Integer-valued polynomials; Global fields; Irreducible polynomials; Factorizations; Discrete valuations domains; primary 11R09; 11C08; 13A05; secondary 12E05; 13F20; 13F05;
D O I
暂无
中图分类号
学科分类号
摘要
Let V be a valuation ring of a global field K. We show that for all positive integers k and 1<n1≤⋯≤nk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 < n_1 \le \cdots \le n_k$$\end{document} there exists an integer-valued polynomial on V, that is, an element of Int(V)={f∈K[X]∣f(V)⊆V}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{Int}\,}}(V) = \{ f \in K[X] \mid f(V) \subseteq V \}$$\end{document}, which has precisely k essentially different factorizations into irreducible elements of Int(V)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{Int}\,}}(V)$$\end{document} whose lengths are exactly n1,…,nk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_1,\ldots ,n_k$$\end{document}. In fact, we show more, namely that the same result holds true for every discrete valuation domain V with finite residue field such that the quotient field of V admits a valuation ring independent of V whose maximal ideal is principal or whose residue field is finite. If the quotient field of V is a purely transcendental extension of an arbitrary field, this property is satisfied. This solves an open problem proposed by Cahen, Fontana, Frisch and Glaz in these cases.
引用
收藏
页码:773 / 789
页数:16
相关论文
共 17 条
[1]  
Cahen Paul-Jean(1995)Elasticity for integral-valued polynomials J. Pure Appl. Algebra 103 303-311
[2]  
Chabert Jean-Luc(2012)A closer look at non-unique factorization via atomic decay and strong atoms Prog. Commut. Algebra 2 301-318
[3]  
Chapman ST(2005)Irreducible polynomials and full elasticity in rings of integer-valued polynomials J. Algebra 293 595-610
[4]  
Krause U(2013)A construction of integer-valued polynomials with prescribed sets of lengths of factorizations Monatsh. Math. 1713–4 341-350
[5]  
Chapman Scott T(2020)A graph-theoretic criterion for absolute irreducibility of integer-valued polynomials with square-free denominator Commun. Algebra 48 3716-3723
[6]  
McClain Barbara A(2019)Sets of lengths of factorizations of integer-valued polynomials on Dedekind domains with finite residue fields J. Algebra 528 231-249
[7]  
Frisch Sophie(2022)Split absolutely irreducible integer-valued polynomials over discrete valuation domains J. Algebra 602 247-277
[8]  
Frisch Sophie(2021)Absolute irreducibility of the binomial polynomials J. Algebra 578 92-114
[9]  
Nakato Sarah(undefined)undefined undefined undefined undefined-undefined
[10]  
Frisch Sophie(undefined)undefined undefined undefined undefined-undefined