The electronic structure of 5-methylhexa-1,2,4-triene-1,3-diyl, the first representative of highly delocalized triplet ethynylvinylcarbenes, from ESR spectroscopy data and quantum chemical calculations

被引:0
作者
E. Ya. Misochko
A. V. Akimov
A. A. Masitov
D. V. Korchagin
S. M. Aldoshin
S. E. Boganov
K. N. Shavrin
V. D. Gvozdev
M. P. Egorov
O. M. Nefedov
机构
[1] Russian Academy of Sciences,Institute of Problems of Chemical Physics
[2] Russian Academy of Sciences,N. D. Zelinsky Institute of Organic Chemistry
来源
Russian Chemical Bulletin | 2011年 / 60卷
关键词
carbenes; matrix isolation; ESR spectroscopy; zero-field splitting tensor; electronic spin-spin interactions; quantum chemical calculations; density functional theory;
D O I
暂无
中图分类号
学科分类号
摘要
The ESR spectrum of the first representative of highly conjugated triplet ethynylvinylcarbenes, 5-methylhexa-1,2,4-triene-1,3-diyl (1), was recorded in solid argon matrix. The zero-field splitting (ZFS) parameters of carbene 1 (D = 0.5054±0.0006 cm−1 and E = 0.0045±0.0002 cm−1) determined from the experimental ESR spectrum are in between the corresponding parameters of ethynylcarbene C3H2 (2) and vinylcarbene C3H4 (3): D(3) < D(1) < D(2) and E(2) < E(1) < E(3). Quantum chemical calculations of the ZFS parameters of 1, 2, and 3 have been carried out for the first time using two DFT-based approaches, RODFT and UDFT. An analysis of the experimental and theoretical ZFS parameters shows that carbene 1 is characterized by a greater extent of delocalization of the spin density of unpaired electrons than carbenes 2 and 3. The characteristic structural fragments of carbene 1 possess the principal features of the electronic structure of both ethynylcarbene (2) and vinylcarbene (3), respectively. Magnetic spin-spin interactions are identical in carbenes 1 and 2. The dominant contribution to D in 1 and 2 results from the one-center spin-spin interactions on carbon atoms in the propynylidene group, which are subjected to strong spin polarization.
引用
收藏
页码:2180 / 2187
页数:7
相关论文
共 132 条
[1]  
Closs G. L.(1963)undefined J. Am. Chem. Soc. 85 99-undefined
[2]  
Closs L.(1960)undefined J. Am. Chem. Soc. 82 247-undefined
[3]  
Skell P. S.(2005)undefined Chem. Soc. Rev. 34 714-undefined
[4]  
Klebe J.(2003)undefined Chem. Rev. 103 1271-undefined
[5]  
Walsh R.(2003)undefined Chem. Rev. 103 1295-undefined
[6]  
Baird M. S.(1994)undefined J. Am. Chem. Soc. 116 6179-undefined
[7]  
Nakamura M.(2005)undefined Nucl. Instrum. Methods Phys. Res., Sect. B 228 315-undefined
[8]  
Isobe H.(2008)undefined J. Phys. Chem. A 112 1363-undefined
[9]  
Nakamura E.(2003)undefined J. Phys. Chem. A 107 2680-undefined
[10]  
Noro M.(2005)undefined Phys. Chem. Chem. Phys. 7 806-undefined