Generalized characteristics and Lax–Oleinik operators: global theory

被引:0
作者
Piermarco Cannarsa
Wei Cheng
机构
[1] Università di Roma “Tor Vergata”,Dipartimento di Matematica
[2] Nanjing University,Department of Mathematics
来源
Calculus of Variations and Partial Differential Equations | 2017年 / 56卷
关键词
35F21; 49L25; 37J50;
D O I
暂无
中图分类号
学科分类号
摘要
For autonomous Tonelli systems on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^n$$\end{document}, we develop an intrinsic proof of the existence of generalized characteristics using sup-convolutions. This approach, together with convexity estimates for the fundamental solution, leads to new results such as the global propagation of singularities along generalized characteristics.
引用
收藏
相关论文
共 57 条
  • [1] Albano P(2014)Propagation of singularities for solutions of Hamilton–Jacobi equations J. Math. Anal. Appl. 411 684-687
  • [2] Albano P(2014)The regularity of the distance function propagates along minimizing geodesics Nonlinear Anal. 95 308-312
  • [3] Albano P(2016)Global propagation of singularities for solutions of Hamilton–Jacobi equations J. Math. Anal. Appl. 444 1462-1478
  • [4] Albano P(1999)Structural properties of singularities of semiconcave functions Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 719-740
  • [5] Cannarsa P(2002)Propagation of singularities for solutions of nonlinear first order partial differential equations Arch. Ration. Mech. Anal. 162 1-23
  • [6] Albano P(2013)Singular gradient flow of the distance function and homotopy equivalence Math. Ann. 356 23-43
  • [7] Cannarsa P(1989)Lipschitz regularity for minimizers of integral functionals with highly discontinuous integrands J. Math. Anal. Appl. 142 301-316
  • [8] Albano P(1993)On the propagation of singularities of semi-convex functions Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 20 597-616
  • [9] Cannarsa P(2007)Existence of Ann. Sci. École Norm. Sup. (4) 40 445-452
  • [10] Nguyen KT(2008) critical sub-solutions of the Hamilton–Jacobi equation on compact manifolds J. Am. Math. Soc. 21 615-669