Estimation of the tail index in the max-aggregation scheme

被引:0
作者
Vygantas Paulauskas
Marijus Vaičiulis
机构
[1] Vilnius University,Faculty of Mathematics and Informatics
[2] Vilnius University,Institute of Mathematics and Informatics
来源
Lithuanian Mathematical Journal | 2012年 / 52卷
关键词
asymptotic normality; Hill estimator; mean-squared error; tail index; 62 F12; 62 G32; 60 F05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we continue the investigation of an estimator proposed in [V. Paulauskas and M. Vaičiulis, Several modifications of DPR estimator of the tail index, Lith. Math. J., 51(1):36–50, 2011]. Specifically, we investigate the asymptotic behavior of the so-called DPR estimator under several mostly popular max-aggregation schemes.
引用
收藏
页码:297 / 315
页数:18
相关论文
共 17 条
[1]  
Berk KN(1973)A central limit theorem for Ann. Probab. 1 352-354
[2]  
Davydov Y(2000)-dependent random variables with unbounded J. Theor. Probab. 13 39-64
[3]  
Paulauskas V(2005)More on Lith. Math. J. 45 272-283
[4]  
Račkauskas A(2010)-stable convex sets in Banach spaces Commun. Stat., Theory Methods 39 1536-1551
[5]  
Gadeikis K(1964)On the estimation of a change point in a tail index Ann. Math. Stat. 35 1726-1736
[6]  
Paulauskas V(2003)Estimator of the Pareto index based on non-parametric test Acta Appl. Math. 79 55-67
[7]  
Jurečkova J(2011)On extreme order statistics Lith. Math. J. 51 36-50
[8]  
Omelka M(2010)A new estimator for tail index Ann. Inst. Stat. Math. 62 277-289
[9]  
Lamperti J(2000)Several modifications of DPR estimator of the tail index Stat. Probab. Lett. 47 115-124
[10]  
Paulauskas V(2001)On the tail index of a heavy-tailed distribution Extremes 3 291-303