Self-Referential Justifications in Epistemic Logic

被引:0
作者
Roman Kuznets
机构
[1] Universität Bern,Institut für Informatik und angewandte Mathematik
来源
Theory of Computing Systems | 2010年 / 46卷
关键词
Self-referentiality; Justification logic; Epistemic modal logic; Logic of Proofs;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is devoted to the study of self-referential proofs and/or justifications, i.e., valid proofs that prove statements about these same proofs. The goal is to investigate whether such self-referential justifications are present in the reasoning described by standard modal epistemic logics such as  \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf{S4}$\end{document} . We argue that the modal language by itself is too coarse to capture this concept of self-referentiality and that the language of justification logic can serve as an adequate refinement. We consider well-known modal logics of knowledge/belief and show, using explicit justifications, that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf{S4}$\end{document} , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf{D4}$\end{document} , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf{K4}$\end{document} , and  \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf{T}$\end{document} with their respective justification counterparts  \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf{LP}$\end{document} , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf{JD4}$\end{document} , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf{J4}$\end{document} , and  \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf{JT}$\end{document} describe knowledge that is self-referential in some strong sense. We also demonstrate that self-referentiality can be avoided for  \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf{K}$\end{document} and  \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf{D}$\end{document} .
引用
收藏
页码:636 / 661
页数:25
相关论文
共 14 条
[1]  
Artemov S.N.(2001)Explicit provability and constructive semantics Bull. Symb. Log. 7 1-36
[2]  
Brezhnev V.N.(2006)Making knowledge explicit: How hard it is Theor. Comput. Sci. 357 23-34
[3]  
Kuznets R.(1975)Normal forms in modal logic Notre Dame J. Form. Log. 16 229-237
[4]  
Fine K.(2005)The logic of proofs, semantically Ann. Pure Appl. Log. 132 1-25
[5]  
Fitting M.(1963)Is justified true belief knowledge? Analysis 23 121-123
[6]  
Gettier E.L.(1974)Gentzen systems for modal logic Notre Dame J. Form. Log. 15 455-461
[7]  
Goble L.F.(1967)A causal theory of knowing J. Philos. 64 357-372
[8]  
Goldman A.I.(2003)Active agents J. Log. Lang. Inform. 12 469-495
[9]  
Hendricks V.F.(2006)On the complexity of the reflected logic of proofs Theor. Comput. Sci. 357 136-142
[10]  
Krupski N.V.(1969)Knowledge: Undefeated justified true belief J. Philos. 66 225-237