Adjoint equations and iterative algorithms in problems of variational data assimilation

被引:0
作者
G. I. Marchuk
V. P. Shutyaev
机构
[1] Russian Academy of Sciences,Institute of Numerical Mathematics
来源
Proceedings of the Steklov Institute of Mathematics | 2012年 / 276卷
关键词
adjoint equations; optimal control; variational data assimilation; iterative algorithms;
D O I
暂无
中图分类号
学科分类号
摘要
Based on the theory of adjoint equations, iterative algorithms for solving one class of data assimilation problems for the reconstruction of the initial condition are developed and substantiated. The iterative processes are optimized with the use of the spectral properties of control operators. The results are illustrated by the example of a quasi-local model of turbulent oceanic heat transfer.
引用
收藏
页码:138 / 152
页数:14
相关论文
共 32 条
[1]  
Agoshkov V. I.(1993)undefined Russ. J. Numer. Anal. Math. Modelling 8 1-undefined
[2]  
Marchuk G. I.(2008)undefined Comput. Math. Math. Phys. 48 1293-undefined
[3]  
Agoshkov V. I.(2008)undefined SIAM J. Sci. Comput. 30 1847-undefined
[4]  
Parmuzin E. I.(2010)undefined J. Comp. Phys. 229 2159-undefined
[5]  
Shutyaev V. P.(1994)undefined Acta Numerica 1 269-undefined
[6]  
Gejadze I.(1962)undefined Zh. Vych. Mat. Mat. Fiz. 2 1132-undefined
[7]  
Dimet F.-X. L.(1986)undefined Tellus 38A 97-undefined
[8]  
Shutyaev V. P.(1997)undefined Proc. Natl. Acad. Sci. U. S. A. 94 4828-undefined
[9]  
Gejadze I.(1993)undefined Russ. J. Numer. Anal. Math. Modelling 8 311-undefined
[10]  
Dimet F.-X. L.(1994)undefined Russ. J. Numer. Anal. Math. Modelling 9 265-undefined