MYBPC3 in hypertrophic cardiomyopathy: from mutation identification to RNA-based correction

被引:0
作者
Verena Behrens-Gawlik
Giulia Mearini
Christina Gedicke-Hornung
Pascale Richard
Lucie Carrier
机构
[1] University Medical Center Hamburg—Eppendorf,Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center
[2] DZHK (German Centre for Cardiovascular Research),Institute of Cardiometabolism and Nutrition (ICAN)
[3] AP-HP,undefined
[4] Hôpitaux Universitaires de la Pitié Salpêtrière—Charles Foix,undefined
[5] UF Cardiogénétique et Myogénétique,undefined
[6] Service de Biochimie Métabolique,undefined
[7] UPMC Université Paris 06,undefined
[8] UMR 956,undefined
[9] IFR14,undefined
[10] Hôpitaux Universitaires de la Pitié Salpêtrière—Charles Foix,undefined
[11] Inserm,undefined
[12] U974,undefined
[13] Université Pierre et Marie Curie—Paris 06,undefined
[14] UM 76,undefined
[15] CNRS,undefined
[16] UMR 7215,undefined
[17] Institut de Myologie,undefined
[18] IFR14,undefined
来源
Pflügers Archiv - European Journal of Physiology | 2014年 / 466卷
关键词
mutations; Haploinsufficiency; Poison peptide; Exon skipping; Exon inclusion; Spliceosome-mediated RNA ; -splicing;
D O I
暂无
中图分类号
学科分类号
摘要
Mutations in MYBPC3 gene, encoding cardiac myosin-binding protein C (cMyBP-C), frequently cause hypertrophic cardiomyopathy (HCM), which affects 0.2 % of the general population. This myocardial autosomal-dominant disorder is the leading cause of sudden cardiac death particularly in young athletes. The current pharmacological and surgical treatments of HCM focus on symptoms relief, but do not address the cause of the disease. With the development of novel strategies targeting the endogenous mutation, causal HCM therapy is now possible. This review will discuss the current knowledge on HCM from the identification of MYBPC3 gene mutations to potential RNA-based correction.
引用
收藏
页码:215 / 223
页数:8
相关论文
共 515 条
[1]  
Aartsma-Rus A(2009)Less is more: therapeutic exon skipping for Duchenne muscular dystrophy Lancet Neurol 8 873-875
[2]  
van Ommen GJ(2008)Genetic basis of hypertrophic cardiomyopathy: from bench to the clinics J Cardiovasc Electrophysiol 19 104-110
[3]  
Alcalai R(2006)Systemic delivery of morpholino oligonucleotide restores dystrophin expression bodywide and improves dystrophic pathology Nat Med 12 175-177
[4]  
Seidman JG(2013)Trans-splicing correction of tau isoform imbalance in a mouse model of tau mis-splicing Hum Mol Genet 22 2603-2611
[5]  
Seidman CE(1995)Cardiac myosin binding protein-C gene splice acceptor site mutation is associated with familial hypertrophic cardiomyopathy Nat Genet 11 438-440
[6]  
Alter J(1997)Organization and sequence of human cardiac myosin binding protein C gene (MYBPC3) and identification of mutations predicted to produce truncated proteins in familial hypertrophic cardiomyopathy Circ Res 80 427-434
[7]  
Lou F(1993)Mapping of a novel gene for familial hypertrophic cardiomyopathy to chromosome 11 Nat Genet 4 311-313
[8]  
Rabinowitz A(2010)The ubiquitin-proteasome system and nonsense-mediated mRNA decay in hypertrophic cardiomyopathy Cardiovasc Res 85 330-338
[9]  
Yin H(2003)ESEfinder: A web resource to identify exonic splicing enhancers Nucleic Acids Res 31 3568-3571
[10]  
Rosenfeld J(2003)Phenotype correction of hemophilia A mice by spliceosome-mediated RNA Nat Med 9 1015-1019