Random sum-free subsets of abelian groups

被引:0
|
作者
József Balogh
Robert Morris
Wojciech Samotij
机构
[1] University of Illinois,Department of Mathematics
[2] University of California San Diego,Department of Mathematics
[3] IMPA,School of Mathematical Sciences
[4] Tel Aviv University,undefined
[5] Trinity College,undefined
来源
Israel Journal of Mathematics | 2014年 / 199卷
关键词
Abelian Group; Random Graph; Arithmetic Progression; Threshold Function; London Mathematical Society;
D O I
暂无
中图分类号
学科分类号
摘要
We characterize the structure of maximum-size sum-free subsets of a random subset of an abelian group G. In particular, we determine the threshold above which, with high probability as |G| → ∞, each such subset is contained in some maximum-size sum-free subset of G, whenever q divides |G| for some (fixed) prime q with q ≡ 2 (mod 3). Moreover, in the special case G = ℤ2n, we determine the sharp threshold for the above property. The proof uses recent ‘transference’ theorems of Conlon and Gowers, together with stability theorems for sum-free sets of abelian groups.
引用
收藏
页码:651 / 685
页数:34
相关论文
共 50 条
  • [1] Sum-free sets in abelian groups
    Ben Green
    Imre Z. Ruzsa
    Israel Journal of Mathematics, 2005, 147 : 157 - 188
  • [2] Counting sum-free sets in abelian groups
    Noga Alon
    József Balogh
    Robert Morris
    Wojciech Samotij
    Israel Journal of Mathematics, 2014, 199 : 309 - 344
  • [3] Sum-free sets in abelian groups
    Lev, VF
    Luczak, T
    Schoen, T
    ISRAEL JOURNAL OF MATHEMATICS, 2001, 125 (1) : 347 - 367
  • [4] Sum-free sets in abelian groups
    Vsevolod F. Lev
    Tomasz Łuczak
    Tomasz Schoen
    Israel Journal of Mathematics, 2001, 125 : 347 - 367
  • [5] Groups with few maximal sum-free sets
    Liu, Hong
    Sharifzadeh, Maryam
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2021, 177
  • [6] Large sum-free sets in ℤ/pℤ
    Vsevolod F. Lev
    Israel Journal of Mathematics, 2006, 154 : 221 - 233
  • [7] Zero-sum subsets of decomposable sets in Abelian groups
    Banakh, T.
    Raysky, A.
    ALGEBRA AND DISCRETE MATHEMATICS, 2020, 30 (01): : 15 - 25
  • [8] Exhaustion numbers of subsets of Abelian groups
    Chin, AYM
    ARS COMBINATORIA, 2003, 68 : 65 - 76
  • [9] On Σ-subsets of naturals over abelian groups
    Khisamiev, A. N.
    SIBERIAN MATHEMATICAL JOURNAL, 2006, 47 (03) : 574 - 583
  • [10] On Σ-subsets of naturals over abelian groups
    A. N. Khisamiev
    Siberian Mathematical Journal, 2006, 47 : 574 - 583