Quantitative DCE-MRI for prediction of pathological complete response following neoadjuvant treatment for locally advanced breast cancer: the impact of breast cancer subtypes on the diagnostic accuracy

被引:0
|
作者
Stylianos Drisis
Thierry Metens
Michael Ignatiadis
Konstantinos Stathopoulos
Shih-Li Chao
Marc Lemort
机构
[1] Institute Jules Bordet,Radiology Department
[2] Erasme University Hospital,Radiology Department
[3] Institute Jules Bordet,Oncology Department
来源
European Radiology | 2016年 / 26卷
关键词
Perfusion magnetic resonance imaging; Neoadjuvant therapy; Breast cancer; Oestrogen receptor; Triple negative breast cancer;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1474 / 1484
页数:10
相关论文
共 50 条
  • [1] Quantitative DCE-MRI for prediction of pathological complete response following neoadjuvant treatment for locally advanced breast cancer: the impact of breast cancer subtypes on the diagnostic accuracy
    Drisis, Stylianos
    Metens, Thierry
    Ignatiadis, Michael
    Stathopoulos, Konstantinos
    Chao, Shih-Li
    Lemort, Marc
    EUROPEAN RADIOLOGY, 2016, 26 (05) : 1474 - 1484
  • [2] Quantitative DCE-MRI prediction of breast cancer recurrence following neoadjuvant chemotherapy: a preliminary study
    Thawani, Rajat
    Gao, Lina
    Mohinani, Ajay
    Tudorica, Alina
    Li, Xin
    Mitri, Zahi
    Huang, Wei
    BMC MEDICAL IMAGING, 2022, 22 (01)
  • [3] Quantitative DCE-MRI prediction of breast cancer recurrence following neoadjuvant chemotherapy: a preliminary study
    Rajat Thawani
    Lina Gao
    Ajay Mohinani
    Alina Tudorica
    Xin Li
    Zahi Mitri
    Wei Huang
    BMC Medical Imaging, 22
  • [4] Early prediction of pathological complete response to neoadjuvant chemotherapy combining DCE-MRI and apparent diffusion coefficient values in breast Cancer
    Xinhong Liang
    Xiaofeng Chen
    Zhiqi Yang
    Yuting Liao
    Mengzhu Wang
    Yulin Li
    Weixiong Fan
    Zhuozhi Dai
    Yunuo Zhang
    BMC Cancer, 22
  • [6] Early prediction of pathological complete response to neoadjuvant chemotherapy combining DCE-MRI and apparent diffusion coefficient values in breast Cancer
    Liang, Xinhong
    Chen, Xiaofeng
    Yang, Zhiqi
    Liao, Yuting
    Wang, Mengzhu
    Li, Yulin
    Fan, Weixiong
    Dai, Zhuozhi
    Zhang, Yunuo
    BMC CANCER, 2022, 22 (01)
  • [7] The Diagnostic Performance of DCE-MRI in Evaluating the Pathological Response to Neoadjuvant Chemotherapy in Breast Cancer: A Meta-Analysis
    Cheng, Qingqing
    Huang, Jiaxi
    Liang, Jianye
    Ma, Mengjie
    Ye, Kunlin
    Shi, Changzheng
    Luo, Liangping
    FRONTIERS IN ONCOLOGY, 2020, 10
  • [8] Radiomic analysis of DCE-MRI for prediction of response to neoadjuvant chemotherapy in breast cancer patients
    Fan, Ming
    Wu, Guolin
    Cheng, Hu
    Zhang, Juan
    Shao, Guoliang
    Li, Lihua
    EUROPEAN JOURNAL OF RADIOLOGY, 2017, 94 : 140 - 147
  • [9] Radiomics Based on DCE-MRI for Predicting Response to Neoadjuvant Therapy in Breast Cancer
    Zeng, Qiao
    Xiong, Fei
    Liu, Lan
    Zhong, Linhua
    Cai, Fengqin
    Zeng, Xianjun
    ACADEMIC RADIOLOGY, 2023, 30 : S38 - S49
  • [10] A deep learning classifier for prediction of pathological complete response to neoadjuvant chemotherapy from baseline breast DCE-MRI
    Ravichandran, Kavya
    Braman, Nathaniel
    Janowczyk, Andrew
    Madabhushi, Anant
    MEDICAL IMAGING 2018: COMPUTER-AIDED DIAGNOSIS, 2018, 10575