The algebraic parts of the central values of quadratic twists of modular L-functions modulo ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}

被引:0
作者
Dohoon Choi
Youngmin Lee
机构
[1] Korea University,Department of Mathematics
[2] Korea Institute for Advanced Study,School of Mathematics
关键词
Central values of modular ; -functions; Mod ; Shimura correspondence; Galois representations; 11F37; 11F67; 11F80;
D O I
10.1007/s40687-022-00361-z
中图分类号
学科分类号
摘要
Let F be a newform of weight 2k on Γ0(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _0(N)$$\end{document} with an odd integer N and a positive integer k, and ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} be a prime larger than or equal to 5 with (ℓ,N)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\ell ,N)=1$$\end{document}. For each fundamental discriminant D, let χD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _{D}$$\end{document} be a quadratic character associated with quadratic field Q(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Q}(\sqrt{D})$$\end{document}. Assume that for each D, the ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-adic valuation of the algebraic part of L(F⊗χD,k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(F\otimes \chi _{D},k)$$\end{document} is non-negative. Let Wℓ+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{\ell }^{+}$$\end{document} (resp. Wℓ-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{\ell }^{-}$$\end{document}) be the set of positive (resp. negative) fundamental discriminants D with (D,N)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(D,N)=1$$\end{document} such that the ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-adic valuation of the algebraic part of L(F⊗χD,k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(F\otimes \chi _{D},k)$$\end{document} is zero. We prove that for each sign ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}, if Wℓϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{\ell }^{\epsilon }$$\end{document} is a non-empty finite set, then Wℓϵ⊂1,(-1)ℓ-12ℓ.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} W_{\ell }^{\epsilon } \subset \left\{ 1, (-1)^{\frac{\ell -1}{2}}\ell \right\} .\end{aligned}$$\end{document}By this result, we prove that if ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document} is the sign of (-1)k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-1)^k$$\end{document}, then k≥ℓ-1ork=ℓ-12.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}k\ge \ell -1 \text { or } k=\frac{\ell -1}{2}. \end{aligned}$$\end{document}These are applied to obtain a lower bound for #{D∈Wℓϵ:|D|≤X}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\#\{D\in W_{\ell }^{\epsilon } : |D|\le X \}$$\end{document} and the indivisibility of the order of the Shafarevich–Tate group of an elliptic curve over Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Q}$$\end{document}. To prove these results, first we refine Waldspurger’s formula on the Shimura correspondence for general odd levels N. Next we study mod ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} modular forms of half-integral weight with few non-vanishing coefficients. To do this, we use the filtration of mod ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} modular forms and mod ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} Galois representations.
引用
收藏
相关论文
共 35 条
  • [1] Ahlgren S(2005)Coefficients of half-integral weight modular forms modulo Math. Ann. 331 219-239
  • [2] Boylan M(2007)Central critical values of modular Am. J. Math. 129 429-454
  • [3] Ahlgren S(2009)-functions and coefficients of half-integral weight modular forms modulo Math. Res. Lett. 16 683-701
  • [4] Boylan M(1970)Congruences for level four cusp forms Math. Ann. 185 134-160
  • [5] Ahlgren S(1978)Hecke operators on Invent. Math. 48 221-243
  • [6] Choi D(1999)Twists of newforms and pseudo-eigenvalues of Duke Math. J. 98 595-611
  • [7] Rouse J(2003)-operators J. Number Theory 99 164-179
  • [8] Atkin AOL(1986)Nonvanishing modulo Ann. Sci. École Norm. Sup. (4) 19 409-468
  • [9] Lehner J(2008) of Fourier coefficients of half-integral weight modular forms Proc. Am. Math. Soc. 136 2683-2688
  • [10] Atkin AOL(2009)Coefficients of half-integral weight modular forms Trans. Am. Math. Soc. 361 3817-3828