Charge transport in solution-processed zinc tin oxide thin film transistors

被引:0
|
作者
Wenbing Hu
Rebecca L. Peterson
机构
[1] University of Michigan,Department of Electrical Engineering and Computer Science
来源
Journal of Materials Research | 2012年 / 27卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Zinc oxide-based transparent amorphous oxide semiconductors (TAOS) are strong contenders to replace amorphous and polycrystalline silicon for large area display backplanes due to their high electron mobility. To enable future roll-to-roll printed electronics, solution-processed fabrication methods are needed. Here, we use low-temperature measurements from 77 to 300 K to quantitatively compare charge transport mechanisms and band-tail density of states of solution-processed zinc tin oxide (ZTO) thin film transistors fabricated with different film composition and annealing temperature. The devices exhibit percolation conduction with Fermi level pinning at high charge carrier concentrations. The shape and energy levels of band-tail states can be engineered by process and stoichiometry. For optimal amorphous ZTO film with Zn:Sn ink ratio of 7:3 and annealing temperature of 480 °C, the band structure exhibits Arrhenius and percolation energy values of 7 and 3 meV, respectively, better than those measured by others for vacuum-processed TAOS films, showing the potential of solution processing.
引用
收藏
页码:2286 / 2292
页数:6
相关论文
共 50 条
  • [1] Charge transport in solution-processed zinc tin oxide thin film transistors
    Hu, Wenbing
    Peterson, Rebecca L.
    JOURNAL OF MATERIALS RESEARCH, 2012, 27 (17) : 2286 - 2292
  • [2] Charge transport at high temperatures in solution-processed zinc-tin-oxide thin-film transistors
    Yu, Kyeong Min
    Bae, Byung Seong
    Jung, Myunghee
    Yun, Eui-Jung
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2014, 65 (02) : 145 - 150
  • [3] Charge transport at high temperatures in solution-processed zinc-tin-oxide thin-film transistors
    Kyeong Min Yu
    Byung Seong Bae
    Myunghee Jung
    Eui-Jung Yun
    Journal of the Korean Physical Society, 2014, 65 : 145 - 150
  • [4] Solution-processed zinc tin oxide semiconductor for thin-film transistors
    Jeong, Sunho
    Jeong, Youngmin
    Moon, Jooho
    JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (30): : 11082 - 11085
  • [5] Stability Study of Solution-Processed Zinc Tin Oxide Thin-Film Transistors
    Zhang, Xue
    Ndabakuranye, Jean Pierre
    Kim, Dong Wook
    Choi, Jong Sun
    Park, Jaehoon
    ELECTRONIC MATERIALS LETTERS, 2015, 11 (06) : 964 - 972
  • [6] Stability study of solution-processed zinc tin oxide thin-film transistors
    Xue Zhang
    Jean Pierre Ndabakuranye
    Dong Wook Kim
    Jong Sun Choi
    Jaehoon Park
    Electronic Materials Letters, 2015, 11 : 964 - 972
  • [7] Enhancement of solution-processed zinc tin oxide thin film transistors by silicon incorporation
    Mang, Sung Ryul
    Yoon, Dae Ho
    Jeon, In Young
    Chung, Ho Kyoon
    Pu, Lyong Sun
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2013, 31 (03):
  • [8] Solution-processed zinc oxide thin-film transistors
    Levy, David
    Irving, Lyn
    Childs, Andrea
    2007 SID INTERNATIONAL SYMPOSIUM, DIGEST OF TECHNICAL PAPERS, VOL XXXVIII, BOOKS I AND II, 2007, 38 : 230 - +
  • [9] Band transport and mobility edge in amorphous solution-processed zinc tin oxide thin-film transistors
    Lee, Chen-Guan
    Cobb, Brian
    Dodabalapur, Ananth
    APPLIED PHYSICS LETTERS, 2010, 97 (20)
  • [10] Investigation on the Doping Dependence of Solution-Processed Zinc Tin Oxide Thin Film and Thin-Film Transistors
    Jung, C. H.
    Lee, J. Y.
    Pu, L. S.
    Yoon, D. H.
    SYNTHESIS AND REACTIVITY IN INORGANIC METAL-ORGANIC AND NANO-METAL CHEMISTRY, 2011, 41 (09) : 1153 - 1157