Central circulatory and peripheral O2 extraction changes as interactive facilitators of pulmonary O2 uptake during a repeated high-intensity exercise protocol in humans

被引:0
作者
Yoshiyuki Fukuba
Masako Yamaoka Endo
Yukie Ohe
Yuiko Hirotoshi
Asami Kitano
Chiaki Shiragiku
Akira Miura
Osamu Fukuda
Hatsumi Ueoka
Motohiko Miyachi
机构
[1] Prefectural University of Hiroshima,Department of Exercise Science and Physiology, School of Health Sciences
[2] Yasuda Women’s University,Department of Nutritional Sciences
[3] National Institute of Advanced Industrial Science and Technology,Laboratory for Human Science and Biomedical Engineering
[4] National Institute of Health and Nutrition,Laboratory of Physical Activity and Health Evaluation
来源
European Journal of Applied Physiology | 2007年 / 99卷
关键词
High-intensity exercise; Cardiac output; Arteriovenous O; content difference;
D O I
暂无
中图分类号
学科分类号
摘要
It has frequently been demonstrated that prior high-intensity exercise facilitates pulmonary oxygen uptake \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\dot{V}\hbox{O}_2})$$\end{document} response at the onset of subsequent identical exercise. To clarify the roles of central O2 delivery and/or peripheral O2 extraction in determining this phenomenon, we investigated the relative contributions of cardiac output (CO) and arteriovenous O2 content difference \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\hbox{a-}{\bar{\rm v}\hbox{DO}_2})$$\end{document} to the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{V}\hbox{O}_2}$$\end{document} transient during repeated bouts of high-intensity knee extension (KE) exercise. Nine healthy subjects volunteered to participate in this study. The protocol consisted of two consecutive 6-min KE exercise bouts in a supine position (work rate 70–75% of peak power) separated by 6 min of rest. Throughout the protocol, continuous-wave Doppler ultrasound was used to measure beat-by-beat CO (i.e., via simultaneous measurement of stroke volume and the diameter of the arterial aorta). The phase II \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{V}\hbox{O}_2}$$\end{document} response was significantly faster and the slow component (phase III) was significantly attenuated during the second KE bout compared to the first. This was a result of increased CO during the first 30 s of exercise: CO contributing to 100 and 56% of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{V}\hbox{O}_2}$$\end{document} speeding at 10 and 30 s, respectively. After this, the contribution of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox{a-}{\bar{\rm v}\hbox{DO}_2}$$\end{document} became increasingly more predominant: being responsible to an estimated 64% of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{V}\hbox{O}_2}$$\end{document} speeding at 90 s, which rose to 100% by 180 s. This suggests that, while both CO and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox{a-}{\bar{\rm v}\hbox{DO}_2}$$\end{document} clearly interact to determine the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{V}\hbox{O}_2}$$\end{document} response, the speeding of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{V}\hbox{O}_2}$$\end{document} kinetics by prior high-intensity KE exercise is predominantly attributable to increases in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox{a-}{\bar{\rm v}\hbox{DO}_2}$$\end{document}.
引用
收藏
页码:361 / 369
页数:8
相关论文
共 164 条
[1]  
Barstow TJ(1996)Influence of muscle fiber type and pedal frequency on oxygen uptake kinetics of heavy exercise J Appl Physiol 81 1642-1650
[2]  
Jones AM(2002)Effects of prior contractions on muscle microvascular oxygen pressure at onset of subsequent contractions J Physiol 539 927-934
[3]  
Nguyen PH(2000)Effects of prior heavy exercise on phase II pulmonary oxygen uptake kinetics during heavy exercise J Appl Physiol 89 1387-1396
[4]  
Casaburi R(1987)Determination of stroke volume and cardiac output during exercise: comparison of two-dimensional and Doppler echocardiography, Fick oximetry, and thermodilution Circulation 76 539-547
[5]  
Behnke BJ(1986)Ventilation and cardiac output during the onset of exercise, and during voluntary hyperventilation, in humans J Physiol 370 567-583
[6]  
Kindig CA(1991)Cardiac output, oxygen consumption and arteriovenous oxygen difference following a sudden rise in exercise level in humans J Physiol 441 501-512
[7]  
Musch TI(2003)Facial cooling-induced bradycardia does not slow pulmonary J Appl Physiol 95 1623-1631
[8]  
Sexton WL(2005) kinetics at the onset of high-intensity exercise Eur J Appl Physiol 95 418-430
[9]  
Poole DC(2002)Kinetics of pulmonary J Appl Physiol 92 2467-2474
[10]  
Burnley M(2004) and femoral artery blood flow and their relationship during repeated bouts of heavy exercise Exp Physiol 89 243-253