The twisted conjugacy problem for endomorphisms of metabelian groups

被引:0
作者
E. Ventura
V. A. Roman’kov
机构
[1] University Politécnica de Catalunya,
[2] Dostoevskii Omsk State University,undefined
来源
Algebra and Logic | 2009年 / 48卷
关键词
metabelian group; twisted conjugacy; endomorphism; fixed points; Fox derivatives;
D O I
暂无
中图分类号
学科分类号
摘要
Let M be a finitely generated metabelian group explicitly presented in a variety \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\mathcal{A}}^2 $\end{document} of all metabelian groups. An algorithm is constructed which, for every endomorphism φ ∈ End(M) identical modulo an Abelian normal subgroup N containing the derived subgroup M′ and for any pair of elements u, v ∈ M, decides if an equation of the form (xφ)u = vx has a solution in M. Thus, it is shown that the title problem under the assumptions made is algorithmically decidable. Moreover, the twisted conjugacy problem in any polycyclic metabelian group M is decidable for an arbitrary endomorphism φ ∈ End(M).
引用
收藏
页码:89 / 98
页数:9
相关论文
共 16 条
[1]  
Hall P(1954)Finiteness conditions for soluble groups Proc. London Math. Soc., III. Ser. 4 419-436
[2]  
Hall P(1959)On the finiteness of certain soluble groups Proc. London Math. Soc., III. Ser. 9 595-622
[3]  
Baumslag G(1994)The algorithmic theory of finitely generated metabelian groups Trans. Am. Math. Soc. 344 629-648
[4]  
Cannonito FB(1983)Algorithmic and model-theoretic problems in groups Itogi Nauki Tekhniki. Algebra, Geometry, and Topology 21 3-79
[5]  
Robinson DJ(1982)Conjugacy problem in metabelian groups Mat. Zametki 31 495-507
[6]  
Remeslennikov VN(1969)Conjugacy in polycyclic groups Algebra Logika 8 712-725
[7]  
Roman’kov VA(1976)Conjugate separability in polycyclic groups J. Alg. 42 1-10
[8]  
Noskov GA(1981)A finitely presented solvable group with undecidable word problem Izv. Akad. Nauk SSSR, Ser. Mat. 45 852-873
[9]  
Remeslennikov VN(1978)Constructions in a polynomial ring over the ring of integers Am. J. Math. 100 685-706
[10]  
Formanek E(1953)Free differential calculus. I: Derivation in the free group ring Ann. Math. (2) 57 547-560