In this article we consider the two-dimensional Navier—Stokes equations with free boundary condition (open surface), and derive a number of different results: a new orthogonal property for the nonlinear term, improved a priori estimates on the solution, an upper bound on the dimension of the attractor which agrees with the conventional theory of turbulence; finally, for elongated rectangular domains, an improved Lieb—Thirring (collective Sobolev) inequality leads to an upper bound on the dimension of the attractor which might be optimal.