Set-Theoretic Solutions of the Pentagon Equation

被引:0
作者
Ilaria Colazzo
Eric Jespers
Łukasz Kubat
机构
[1] Vrije Universiteit Brussel,Department of Mathematics
[2] Institute of Mathematics,undefined
[3] University of Warsaw,undefined
来源
Communications in Mathematical Physics | 2020年 / 380卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A set-theoretic solution of the Pentagon Equation on a non-empty set S is a map s:S2→S2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s:S^2\rightarrow S^2$$\end{document} such that s23s13s12=s12s23\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_{23}s_{13}s_{12}=s_{12}s_{23}$$\end{document}, where s12=s×id\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_{12}=s\times {{{\,\mathrm{id}\,}}}$$\end{document}, s23=id×s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_{23}={{{\,\mathrm{id}\,}}}\times s$$\end{document} and s13=(τ×id)(id×s)(τ×id)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_{13}=(\tau \times {{{\,\mathrm{id}\,}}})({{{\,\mathrm{id}\,}}}\times s)(\tau \times {{{\,\mathrm{id}\,}}})$$\end{document} are mappings from S3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^3$$\end{document} to itself and τ:S2→S2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau :S^2\rightarrow S^2$$\end{document} is the flip map, i.e., τ(x,y)=(y,x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (x,y) =(y,x)$$\end{document}. We give a description of all involutive solutions, i.e., s2=id\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s^2={{\,\mathrm{id}\,}}$$\end{document}. It is shown that such solutions are determined by a factorization of S as direct product X×A×G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X\times A \times G$$\end{document} and a map σ:A→Sym(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma :A\rightarrow {{\,\mathrm{Sym}\,}}(X)$$\end{document}, where X is a non-empty set and A, G are elementary abelian 2-groups. Isomorphic solutions are determined by the cardinalities of A, G and X, i.e., the map σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} is irrelevant. In particular, if S is finite of cardinality 2n(2m+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^n(2m+1)$$\end{document} for some n,m⩾0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n,m\geqslant 0$$\end{document} then, on S, there are precisely n+22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {\begin{array}{c}n+2\\ 2\end{array}}\right) $$\end{document} non-isomorphic solutions of the Pentagon Equation.
引用
收藏
页码:1003 / 1024
页数:21
相关论文
共 56 条
[41]  
Jiang L(undefined)undefined undefined undefined undefined-undefined
[42]  
Liu M(undefined)undefined undefined undefined undefined-undefined
[43]  
Kashaev RM(undefined)undefined undefined undefined undefined-undefined
[44]  
Kashaev RM(undefined)undefined undefined undefined undefined-undefined
[45]  
Sergeev SM(undefined)undefined undefined undefined undefined-undefined
[46]  
Lu J-H(undefined)undefined undefined undefined undefined-undefined
[47]  
Yan M(undefined)undefined undefined undefined undefined-undefined
[48]  
Zhu Y-C(undefined)undefined undefined undefined undefined-undefined
[49]  
Maillet JM(undefined)undefined undefined undefined undefined-undefined
[50]  
Militaru G(undefined)undefined undefined undefined undefined-undefined