Normal families of meromorphic functions sharing one function

被引:0
作者
Ling Qiu
FeiFei Hu
机构
[1] Beijing University of Technology,College of Applied Science
来源
Journal of Inequalities and Applications | / 2013卷
关键词
meromorphic function; normal family; shared holomorphic function;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose p(z) is a holomorphic function, the multiplicity of its zeros is at most d, P(z) is a nonconstant polynomial. Let ℱ be a family of meromorphic functions in a domain D, all of whose zeros and poles have multiplicity at least max{k2+d+1,k+d}. If for each pair of functions f and g in ℱ, P(f)f(k) and P(g)g(k) share a holomorphic function p(z), then ℱ is normal in D. It generalizes and extends the results of Jiang, Gao and Wu, Xu.
引用
收藏
相关论文
共 17 条
  • [1] Mues E(1979)Über ein problem von Hayman Math. Z 164 239-259
  • [2] Clunie J(1967)On a result of Hayman J. Lond. Math. Soc 42 389-392
  • [3] Yang L(1994)Angular distribution of values of Sci. China Ser. A 37 284-294
  • [4] Yang CC(1998)On the zeros of Chin. Ann. Math., Ser. A 19 275-282
  • [5] Zhang ZF(2005)On the value distribution of Journal of Huaibei Coal Industry Teachers College. Natural Science Edition 26 1-4
  • [6] Song GD(2006)A fundamental inequality of theory of meromorphic function and its applications Acta Math. Sin 49 443-450
  • [7] Wang YM(2011)Normality criteria of meromorphic functions sharing one value J. Math. Anal. Appl 381 724-731
  • [8] Wang JP(2012)Normal families of meromorphic functions and shared values Monatshefte Math 165 569-578
  • [9] Meng DW(2000)Normal families and share values Bull. Lond. Math. Soc 32 325-331
  • [10] Hu PC(1991)On the conjecture of Hayman Acta Math. Sin. New Ser 7 119-126