Sharp Inequalities for the Numerical Radii of Block Operator Matrices

被引:0
作者
M. Ghaderi Aghideh
M. S. Moslehian
J. Rooin
机构
[1] Institute for Advanced Studies in Basic Sciences (IASBS),Department of Mathematics
[2] Tusi Mathematical Research Group (TMRG),Department of Pure Mathematics, Center of Excellence in Analysis on Algebraic Structures (CEAAS)
[3] Ferdowsi University of Mashhad,undefined
来源
Analysis Mathematica | 2019年 / 45卷
关键词
numerical radius; convexity; mixed Cauchy–Schwarz inequality; polar decomposition.; 47A12; 47A63; 47A30.;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we present several sharp upper bounds for the numerical radii of the diagonal and off-diagonal parts of the 2×2 block operator matrix [ABCD]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left[ {\begin{array}{*{20}{c}} A&B \\ C&D \end{array}} \right]$$\end{document}. Among extensions of some results of Kittaneh et al., it is shown that if T=[A00D]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T = \left[ {\begin{array}{*{20}{c}} A&0 \\ 0&D \end{array}} \right]$$\end{document}, and f and g are non-negative continuous functions on [0,∞) such that f(t)g(t) = t (t ≥ 0), then for all non-negative nondecreasing convex functions h on [0,∞), we obtain that h(wr(T))max(∥1ph(fpr(|A|))+1qh(gqr(|A|))∥,∥1ph(fpr(|D|))+1qh(gqr(|D|))∥)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{array}{*{20}{c}} {h({w^r}(T))} \\ { \leqslant \max \left( {\left\| {\frac{1}{p}h({f^{pr}}(|A|)) + \frac{1}{q}h({g^{qr}}(|A*|))} \right\|,\left\| {\frac{1}{p}h({f^{pr}}(|D|)) + \frac{1}{q}h({g^{qr}}(|D*|))} \right\|} \right)} \end{array}$$\end{document} where p, q > 1 with 1p+1q=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tfrac{1}{p} + \tfrac{1}{q} = 1$$\end{document}, and r min(p, q) ≥ 2.
引用
收藏
页码:687 / 703
页数:16
相关论文
共 24 条
[1]  
Axelsson O(1994)On the numerical radius of matrices and its application to iterative solution methods, Special issue: The numerical range and numerical radius Linear Multilinear Algebra 37 225-238
[2]  
Lu H(2018)Upper bounds for numerical radius inequalities involving off-diagonal operator matrices Ann. Funct. Anal. 9 297-309
[3]  
Polman B(2007)Numerical radius inequalities for Hilbert space operators. II Studia Math. 182 133-140
[4]  
Bakherad M(2018)Some generalizations of numerical radius on off-diagonal part of 2 J. Math. Inequal. 12 447-457
[5]  
Shebrawi K(2011) 2 operator matrices Integral Equations Operator Theory 71 129-147
[6]  
El-Haddad M(2011)Numerical radius inequalities for certain 2 Numer. Funct. Anal. Optim. 32 739-749
[7]  
Kittaneh F(2005) 2 operator matrices Studia Math. 168 73-80
[8]  
Hajmohamadi M(2003)Numerical radius inequalities for commutators of Hilbert space operators Studia Math. 158 11-17
[9]  
Lashkaripour R(1988)Numerical radius inequalities for Hilbert space operators Publ. Res. Inst. Math. Sci. 24 283-293
[10]  
Bakherad M(2006)A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix Linear Algebra Appl. 418 153-160