Parity-Constrained Triangulations with Steiner Points

被引:0
|
作者
Victor Alvarez
机构
[1] Universität des Saarlandes,Information Systems Group
来源
Graphs and Combinatorics | 2015年 / 31卷
关键词
Geometric Graphs; Algorithmic Combinatorial Geometry; Steinerpoints; Triangulations; Parity-constrained;
D O I
暂无
中图分类号
学科分类号
摘要
Let P⊂R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${P\subset\mathbb{R}^{2}}$$\end{document} be a set of n points, of which k lie in the interior of the convex hull CH(P) of P. Let us call a triangulation T of P even (odd) if and only if all its vertices have even (odd) degree, and pseudo-even (pseudo-odd) if at least the k interior vertices have even (odd) degree. On the one hand, triangulations having all its interior vertices of even degree have one nice property; their vertices can be 3-colored, see (Heawood in Quart J Pure Math 29:270–285, 1898, Steinberg in A source book for challenges and directions, vol 55. Elsevier, Amsterdam, pp 211–248, 1993, Diks et al. in Lecture notes in computer science, vol 2573. Springer, Berlin, pp 138–149, 2002). On the other hand, odd triangulations have recently found an application in the colored version of the classic “Happy Ending Problem” of Erdős and Szekeres, see (Aichholzer et al. in SIAM J Discrete Math 23(4):2147–2155, 2010). It is easy to prove that there are sets of points that admit neither pseudo-even nor pseudo-odd triangulations. In this paper we show nonetheless how to construct a set of Steiner points S = S(P) of size at most k3+c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{k}{3} + c}$$\end{document} , where c is a positive constant, such that a pseudo-even (pseudo-odd) triangulation can be constructed on P∪S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${P \cup S}$$\end{document} . Moreover, we also show that even (odd) triangulations can always be constructed using at most n3+c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{n}{3} + c}$$\end{document} Steiner points, where again c is a positive constant. Our constructions have the property that all but at most two Steiner points lie in the interior of CH(P).
引用
收藏
页码:35 / 57
页数:22
相关论文
共 50 条
  • [41] Bichromatic Quadrangulations with Steiner Points
    Victor Alvarez
    Toshinori Sakai
    Jorge Urrutia
    Graphs and Combinatorics, 2007, 23 : 85 - 98
  • [42] Regular triangulations of dynamic sets of points
    Vigo, M
    Pla, N
    Cotrina, J
    COMPUTER AIDED GEOMETRIC DESIGN, 2002, 19 (02) : 127 - 149
  • [43] Optimal triangulation with Steiner points
    Aronov, Boris
    Asano, Tetsuo
    Funke, Stefan
    ALGORITHMS AND COMPUTATION, 2007, 4835 : 681 - +
  • [44] Clustering based on Steiner points
    Liang, Jiuzhen
    Song, Wei
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2012, 3 (02) : 141 - 148
  • [45] Steiner reducing sets of minimum weight triangulations: Structure and topology
    Traub, Cynthia M.
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2015, 49 : 24 - 36
  • [46] STEINER POINTS OF CONVEX BODIES
    SCHNEIDER, R
    ISRAEL JOURNAL OF MATHEMATICS, 1971, 9 (02) : 241 - +
  • [47] Bichromatic quadrangulations with Steiner points
    Alvarez, Victor
    Sakai, Toshinori
    Urrutia, Jorge
    GRAPHS AND COMBINATORICS, 2007, 23 (Suppl 1) : 85 - 98
  • [48] COMPUTING STEINER POINTS AND PROBABILITY STEINER POINTS IN l(1) AND l(2) METRIC SPACES
    Weng, J. F.
    Mareels, I.
    Thomas, D. A.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2009, 1 (04) : 541 - 554
  • [49] Approximating Steiner Trees and Forests with Minimum Number of Steiner Points
    Cohen, Nachshon
    Nutov, Zeev
    APPROXIMATION AND ONLINE ALGORITHMS, WAOA 2014, 2015, 8952 : 95 - 106
  • [50] Approximating Steiner trees and forests with minimum number of Steiner points
    Cohen, Nachshon
    Nutov, Zeev
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2018, 98 : 53 - 64