Parity-Constrained Triangulations with Steiner Points

被引:0
|
作者
Victor Alvarez
机构
[1] Universität des Saarlandes,Information Systems Group
来源
Graphs and Combinatorics | 2015年 / 31卷
关键词
Geometric Graphs; Algorithmic Combinatorial Geometry; Steinerpoints; Triangulations; Parity-constrained;
D O I
暂无
中图分类号
学科分类号
摘要
Let P⊂R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${P\subset\mathbb{R}^{2}}$$\end{document} be a set of n points, of which k lie in the interior of the convex hull CH(P) of P. Let us call a triangulation T of P even (odd) if and only if all its vertices have even (odd) degree, and pseudo-even (pseudo-odd) if at least the k interior vertices have even (odd) degree. On the one hand, triangulations having all its interior vertices of even degree have one nice property; their vertices can be 3-colored, see (Heawood in Quart J Pure Math 29:270–285, 1898, Steinberg in A source book for challenges and directions, vol 55. Elsevier, Amsterdam, pp 211–248, 1993, Diks et al. in Lecture notes in computer science, vol 2573. Springer, Berlin, pp 138–149, 2002). On the other hand, odd triangulations have recently found an application in the colored version of the classic “Happy Ending Problem” of Erdős and Szekeres, see (Aichholzer et al. in SIAM J Discrete Math 23(4):2147–2155, 2010). It is easy to prove that there are sets of points that admit neither pseudo-even nor pseudo-odd triangulations. In this paper we show nonetheless how to construct a set of Steiner points S = S(P) of size at most k3+c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{k}{3} + c}$$\end{document} , where c is a positive constant, such that a pseudo-even (pseudo-odd) triangulation can be constructed on P∪S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${P \cup S}$$\end{document} . Moreover, we also show that even (odd) triangulations can always be constructed using at most n3+c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{n}{3} + c}$$\end{document} Steiner points, where again c is a positive constant. Our constructions have the property that all but at most two Steiner points lie in the interior of CH(P).
引用
收藏
页码:35 / 57
页数:22
相关论文
共 50 条
  • [21] Approximations for Steiner trees with minimum number of Steiner points
    Chen, DH
    Du, DZ
    Hu, XD
    Lin, GH
    Wang, LS
    Xue, GL
    THEORETICAL COMPUTER SCIENCE, 2001, 262 (1-2) : 83 - 99
  • [22] Approximations for Steiner trees with minimum number of Steiner points
    Chen, DG
    Du, DZ
    Hu, XD
    Lin, GH
    Wang, LS
    Xue, GL
    JOURNAL OF GLOBAL OPTIMIZATION, 2000, 18 (01) : 17 - 33
  • [23] A 3D constrained unstructured mesh generation method with VBATM and Steiner points perturbation
    Wang, Shengxi
    Song, Songhe
    Zou, Zhengping
    Jisuan Wuli/Chinese Journal of Computational Physics, 2010, 27 (05): : 649 - 657
  • [24] Off-centers: A new type of Steiner points for computing size-optimal quality-guaranteed Delaunay triangulations
    Uengoer, Alper
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2009, 42 (02): : 109 - 118
  • [25] Off-centers:: A new type of Steiner points for computing size-optimal quality-guaranteed Delaunay triangulations
    Üngör, A
    LATIN 2004: THEORETICAL INFORMATICS, 2004, 2976 : 152 - 161
  • [26] EFFICIENTLY UPDATING CONSTRAINED DELAUNAY TRIANGULATIONS
    WANG, CA
    BIT, 1993, 33 (02): : 238 - 252
  • [27] Constrained higher order Delaunay triangulations
    Gudmundsson, J
    Haverkort, HJ
    van Kreveld, M
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2005, 30 (03): : 271 - 277
  • [28] Computing directional constrained Delaunay triangulations
    Vigo, M
    Pla, N
    COMPUTERS & GRAPHICS-UK, 2000, 24 (02): : 181 - 190
  • [29] A CONSTRAINED STEINER TREE PROBLEM
    ROSENWEIN, MB
    WONG, RT
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1995, 81 (02) : 430 - 439
  • [30] Preprocessing Imprecise Points and Splitting Triangulations
    van Kreveld, Marc
    Loffler, Maarten
    Mitchell, Joseph S. B.
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2008, 5369 : 544 - +