Parity-Constrained Triangulations with Steiner Points

被引:0
|
作者
Victor Alvarez
机构
[1] Universität des Saarlandes,Information Systems Group
来源
Graphs and Combinatorics | 2015年 / 31卷
关键词
Geometric Graphs; Algorithmic Combinatorial Geometry; Steinerpoints; Triangulations; Parity-constrained;
D O I
暂无
中图分类号
学科分类号
摘要
Let P⊂R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${P\subset\mathbb{R}^{2}}$$\end{document} be a set of n points, of which k lie in the interior of the convex hull CH(P) of P. Let us call a triangulation T of P even (odd) if and only if all its vertices have even (odd) degree, and pseudo-even (pseudo-odd) if at least the k interior vertices have even (odd) degree. On the one hand, triangulations having all its interior vertices of even degree have one nice property; their vertices can be 3-colored, see (Heawood in Quart J Pure Math 29:270–285, 1898, Steinberg in A source book for challenges and directions, vol 55. Elsevier, Amsterdam, pp 211–248, 1993, Diks et al. in Lecture notes in computer science, vol 2573. Springer, Berlin, pp 138–149, 2002). On the other hand, odd triangulations have recently found an application in the colored version of the classic “Happy Ending Problem” of Erdős and Szekeres, see (Aichholzer et al. in SIAM J Discrete Math 23(4):2147–2155, 2010). It is easy to prove that there are sets of points that admit neither pseudo-even nor pseudo-odd triangulations. In this paper we show nonetheless how to construct a set of Steiner points S = S(P) of size at most k3+c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{k}{3} + c}$$\end{document} , where c is a positive constant, such that a pseudo-even (pseudo-odd) triangulation can be constructed on P∪S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${P \cup S}$$\end{document} . Moreover, we also show that even (odd) triangulations can always be constructed using at most n3+c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{n}{3} + c}$$\end{document} Steiner points, where again c is a positive constant. Our constructions have the property that all but at most two Steiner points lie in the interior of CH(P).
引用
收藏
页码:35 / 57
页数:22
相关论文
共 50 条
  • [11] Structures of triangulations of points
    Imai, Keiko
    IEICE Transactions on Information and Systems, 2000, E83-D (03) : 428 - 437
  • [12] Optimal angle bounds for Steiner triangulations of polygons
    Bishop, Christopher J.
    PROCEEDINGS OF THE 2022 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2022, : 3127 - 3143
  • [13] Surface mesh generation by means of Steiner triangulations
    Corral, Roque
    Fernández-Castañeda, Jaime
    2001, (39)
  • [14] Surface mesh generation by means of Steiner triangulations
    Corral, R
    Fernández-Castañeda, J
    AIAA JOURNAL, 2001, 39 (01) : 176 - 180
  • [15] Parameterization of triangulations and unorganized points
    Floater, M
    Hormann, K
    TUTORIALS ON MULTIRESOLUTION IN GEOMETRIC MODELLING, 2002, : 287 - 316
  • [16] Gradient-constrained minimum networks (II). Labelled or locally minimal Steiner points
    M. Brazil
    D. A. Thomas
    J. F. Weng
    Journal of Global Optimization, 2008, 42 : 23 - 37
  • [17] Gradient-constrained minimum networks (II). Labelled or locally minimal Steiner points
    Brazil, M.
    Thomas, D. A.
    Weng, J. F.
    JOURNAL OF GLOBAL OPTIMIZATION, 2008, 42 (01) : 23 - 37
  • [18] REMARK ON STEINER POINTS
    COLLINS, MJ
    KAHANE, JP
    BULLETIN DES SCIENCES MATHEMATIQUES, 1974, 98 (04): : 249 - 250
  • [19] On the minimum number of Steiner points of constrained 1-line-fixed Steiner tree in the Euclidean plane R2
    Li, Jianping
    Zheng, Yujie
    Lichen, Junran
    Wang, Wencheng
    OPTIMIZATION LETTERS, 2021, 15 (02) : 669 - 683
  • [20] Approximations for Steiner Trees with Minimum Number of Steiner Points
    DONGHUI CHEN
    DING-ZHU DU
    XIAO-DONG HU
    GUO-HUI LIN
    LUSHENG WANG
    GUOLIANG XUE
    Journal of Global Optimization, 2000, 18 : 17 - 33