On a preorder relation for Schur-convex functions and a majorization inequality for their gradients and divergences

被引:0
作者
Marek Niezgoda
机构
[1] University of Life Sciences in Lublin,Department of Applied Mathematics and Computer Science
来源
Aequationes mathematicae | 2020年 / 94卷
关键词
Majorization; Schur-convex function; Gradient; Divergence; Monotone operator; Convex function; Strongly convex function; Variance; Primary 26B25; 26D10; Secondary 06F20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a preorder relation for Schur-convex functions on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathbb {R}}^{n}$$\end{document} is introduced. A majorization statement is shown for the gradients and divergences of two Gateaux differentiable Schur-convex functions, provided that the difference of the involved functions is also Schur-convex. This implies the monotonicity of a related operator with respect to the used preorder and the classical majorization preorder on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathbb {R}}^{n}$$\end{document}. Special cases of the main result are also studied. In particular, applications are given for strongly convex functions. Some comparisons of variances are presented for uniform distribution.
引用
收藏
页码:1141 / 1150
页数:9
相关论文
共 7 条
  • [1] Eaton ML(1987)Group induced orderings with some applications in statistics CWI Newsl. 16 3-31
  • [2] Nikodem K(2011)Characterizations of inner product spaces by strongly convex functions Banach J. Math. Anal. 5 83-87
  • [3] Páles Z(1998)An analytical characterization of both effective and irreducible groups inducing cone orderings Linear Algebra Appl. 269 105-114
  • [4] Niezgoda M(1998)On Schur–Ostrowski type theorems for group majorization J. Convex Anal. 5 81-105
  • [5] Niezgoda M(2019)An extension of Schur–Ostrowski’s condition, weak Eaton triples and generalized AI functions Linear Algebra Appl. 580 212-235
  • [6] Niezgoda M(1966)Existence theorems and convergence of minimizing sequences for extremal problems with constraints Dokl. Akad. Nauk SSSR 166 287-290
  • [7] Polyak BT(undefined)undefined undefined undefined undefined-undefined