Construction of σ-orthogonal polynomials and gaussian quadrature formulas

被引:0
|
作者
Ying Guang Shi
Guoliang Xu
机构
[1] Chinese Academy of Sciences,Institute of Computational Mathematics and Scientific/Engineering Computing
[2] Hunan Normal University,Department of Mathematics
[3] Chinese Academy of Sciences,LSEC, Institute of Computational Mathematics, Academy of Mathematics and System Sciences
来源
关键词
-orthogonal polynomials; Existence; Uniqueness; Characterizations; Continuity; Gaussian quadrature formulas; Algorithm; Primary 41A55; Secondary 65D32;
D O I
暂无
中图分类号
学科分类号
摘要
Let dα be a measure on R and let σ = (m1, m2,...,mn), where mk ≥ 1, k = 1,2,...,n, are arbitrary real numbers. A polynomial ωn(x) := (x − x1)(x − x2)...(x − xn) with x1 ≤ x2 ≤ ... ≤ xn is said to be the nth σ-orthogonal polynomial with respect to dα if the vector of zeros (x1, x2, ..., xn)T is a solution of the extremal problem \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\int_R {{\prod\limits_{k = 1}^n {{\left| {x - x_{k} } \right|}^{{m_{k} }} d\alpha {\left( x \right)} = {\mathop {\min }\limits_{y_{1} \leqslant y_{2} \leqslant ... \leqslant y_{n} } }} }} }\;{\int_R {{\prod\limits_{k = 1}^n {{\left| {x - y_{k} } \right|}^{{m_{k} }} d\alpha {\left( x \right)}.} }} }$$\end{document} In this paper the existence, uniqueness, characterizations, and continuity with respect to σ of a σ-orthogonal polynomial under a more mild assumption are established. An efficient iterative method based on solving the system of normal equations for constructing a σ-orthogonal polynomial is presented when all the mk are arbitrary real numbers no less than 2. A simple method to calculate the Cotes numbers of the corresponding generalized Gaussian quadrature formula when all the mk are positive integers no less than 2 is provided. Finally, some numerical examples are also given.
引用
收藏
页码:79 / 94
页数:15
相关论文
共 50 条
  • [21] Spherical orthogonal polynomials and symbolic-numeric Gaussian cubature formulas
    Cuyt, A
    Benouahmane, B
    Verdonk, B
    COMPUTATIONAL SCIENCE - ICCS 2004, PT 2, PROCEEDINGS, 2004, 3037 : 557 - 560
  • [22] Orthogonal Laurent polynomials and quadrature formulas for unbounded intervals:: I.: Gauss-type formulas
    Bultheel, A
    Díaz-Mendoza, C
    González-Vera, P
    Orive, R
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2003, 33 (02) : 585 - 608
  • [23] Convergence of Gaussian quadrature formulas
    Shi, YG
    JOURNAL OF APPROXIMATION THEORY, 2000, 105 (02) : 279 - 291
  • [24] A Matlab package computing simultaneous Gaussian quadrature rules for multiple orthogonal polynomials
    Laudadio, Teresa
    Mastronardi, Nicola
    Van Assche, Walter
    Van Dooren, Paul
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 451
  • [25] Orthogonal Laurent polynomials and quadrature formulas for unbounded intervals:: II.: Interpolatory rules
    Bultheel, A
    Díaz-Mendoza, C
    González-Vera, P
    Orive, R
    APPLIED NUMERICAL MATHEMATICS, 2005, 54 (01) : 39 - 63
  • [26] TRIGONOMETRIC MULTIPLE ORTHOGONAL POLYNOMIALS OF SEMI-INTEGER DEGREE AND THE CORRESPONDING QUADRATURE FORMULAS
    Milovanovic, Gradimir V.
    Stanic, Marija P.
    Tomovic, Tatjana V.
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2014, 96 (110): : 211 - 226
  • [27] A novel class of fractionally orthogonal quasi-polynomials and new fractional quadrature formulas
    Rapaic, Milan R.
    Sekara, Tomislav B.
    Govedarica, Vidan
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 245 : 206 - 219
  • [29] A class of hypergeometric polynomials with zeros on the unit circle: Extremal and orthogonal properties and quadrature formulas
    Dimitrov, D. K.
    Ismail, M. E. H.
    Ranga, A. Sri
    APPLIED NUMERICAL MATHEMATICS, 2013, 65 : 41 - 52
  • [30] Sequences of orthogonal Laurent polynomials, bi-orthogonality and quadrature formulas on the unit circle
    Cruz-Barroso, Ruyman
    Daruis, Leyla
    Gonzalez-Vera, Pablo
    Njastad, Olav
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 206 (02) : 950 - 966