One-dimensional model of freely decaying two-dimensional turbulence

被引:0
作者
Leonardo Campanelli
机构
[1] All Saints University,Asudom Academy of Science
来源
Journal of the Korean Physical Society | 2022年 / 80卷
关键词
Two-dimensional turbulence; Shell models; Analytical methods;
D O I
暂无
中图分类号
学科分类号
摘要
We construct a discrete shell model for two-dimensional turbulence that takes into account local and nonlocal interactions between velocity modes in Fourier space. In real space, its continuous limit is described by the one-dimensional Burgers equation. We find a novel approximate scaling solution of such an equation and show that it well describes the main characteristics of the energy spectrum in fully developed, freely decaying two-dimensional turbulence.
引用
收藏
页码:972 / 980
页数:8
相关论文
共 9 条
[1]  
Boffetta G(2012)undefined Annu. Rev. Fluid Mech. 44 427-496
[2]  
Ecke RE(2019)undefined Mod. Phys. Lett. B 3 1950218-undefined
[3]  
Campanelli L(1969)undefined Physics of Fluids Supp. II 233-undefined
[4]  
Batchelor GK(1981)undefined J. Fluid Mech. 110 476-undefined
[5]  
Tatsumi T(2007)undefined J. Fluid Mech. 580 431-undefined
[6]  
Yanase S(1997)undefined Phys. Lett. B 398 321-undefined
[7]  
Davidson PA(1975)undefined J. Fluid Mech. 67 155-undefined
[8]  
Olesen P(undefined)undefined undefined undefined undefined-undefined
[9]  
Kraichnan RH(undefined)undefined undefined undefined undefined-undefined