Schrödinger equations on elliptic curves: symmetries, solutions and eigenvalue problem

被引:0
作者
Valentin Lychagin
Mikhail Roop
机构
[1] Russian Academy of Sciences,V.A. Trapeznikov Institute of Control Sciences
来源
Analysis and Mathematical Physics | 2020年 / 10卷
关键词
Schrödinger type equations; Symmetries; Integrable potentials; Lamé equation; Eigenvalue problem; 34A26; 34A05; 34B09;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study Schrödinger equations on elliptic curves called generalized Lamé equations. We suggest a method of finding integrable potentials for Schrödinger type equations. We apply this method to the Lamé equations and provide a sequence of integrable potentials for which the eigenvalue problem is solved explicitly.
引用
收藏
相关论文
共 8 条
[1]  
Lamé G(1837)Sur les surfaces isothermes dans les corps homogenes en équilibre de température J. Math. Pures Appl. 2 147-188
[2]  
Liang Jiu-Qing(1992)Solitons, bounces and sphalerons on a circle Phys. Lett. B 282 105-110
[3]  
Müller-Kirsten HJW(2005)Integrability of Hamiltonian systems and the Lamé equation Appl. Math. Lett. 18 555-561
[4]  
Tchrakian DH(1981)On algebraic solutions of Lamé’s differential equation J. Differ. Equ. 41 44-58
[5]  
Kasperczuk SP(2007)Finite dimensional dynamics for evolutionary equations Nonlinear Dyn. 48 29-48
[6]  
Baldassarri F(undefined)undefined undefined undefined undefined-undefined
[7]  
Lychagin V(undefined)undefined undefined undefined undefined-undefined
[8]  
Lychagina O(undefined)undefined undefined undefined undefined-undefined