On the Andrews–Yee Identities Associated with Mock Theta Functions

被引:1
作者
Jin Wang
Xinrong Ma
机构
[1] Zhejiang Normal University,Department of Mathematics
[2] Soochow University,Department of Mathematics
来源
Annals of Combinatorics | 2019年 / 23卷
关键词
Mock theta functions; Bailey pair; The WZ method; Transformation formulas; Primary 33D15; Secondary 05A30; 11P81;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we generalize the Andrews–Yee identities associated with the third-order mock theta functions ω(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega (q)$$\end{document} and ν(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu (q)$$\end{document}. We obtain some q-series transformation formulas, one of which gives a new Bailey pair. Using the classical Bailey lemma, we derive a product formula for two 2ϕ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_2\phi _1$$\end{document} series. We also establish recurrence relations and transformation formulas for two finite sums arising from the Andrews–Yee identities.
引用
收藏
页码:1105 / 1122
页数:17
相关论文
共 13 条
[11]  
Choi YS(undefined)The final problem: an account of the mock theta functions undefined undefined undefined-undefined
[12]  
Ma XR(undefined)undefined undefined undefined undefined-undefined
[13]  
Watson GN(undefined)undefined undefined undefined undefined-undefined