On the Andrews–Yee Identities Associated with Mock Theta Functions

被引:1
作者
Jin Wang
Xinrong Ma
机构
[1] Zhejiang Normal University,Department of Mathematics
[2] Soochow University,Department of Mathematics
来源
Annals of Combinatorics | 2019年 / 23卷
关键词
Mock theta functions; Bailey pair; The WZ method; Transformation formulas; Primary 33D15; Secondary 05A30; 11P81;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we generalize the Andrews–Yee identities associated with the third-order mock theta functions ω(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega (q)$$\end{document} and ν(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu (q)$$\end{document}. We obtain some q-series transformation formulas, one of which gives a new Bailey pair. Using the classical Bailey lemma, we derive a product formula for two 2ϕ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_2\phi _1$$\end{document} series. We also establish recurrence relations and transformation formulas for two finite sums arising from the Andrews–Yee identities.
引用
收藏
页码:1105 / 1122
页数:17
相关论文
共 13 条
[1]  
Andrews GE(1966)On basic hypergeometric series, mock theta functions, and partitions I. Quart. J. Math. 17 64-80
[2]  
Andrews GE(1966)On basic hypergeometric series, mock theta functions, and partitions II. Quart. J. Math. 17 132-143
[3]  
Andrews GE(2007)The product of partial theta functions Adv. in Appl. Math. 39 116-120
[4]  
Warnaar SO(2007)The Bailey transform and false theta functions Ramanujan J. 14 173-188
[5]  
Andrews GE(2019)Some identities associated with mock theta function Ramanujan J. 48 613-622
[6]  
Warnaar SO(1947) and Proc. London Math. Soc. 2 421-435
[7]  
Andrews GE(2019)Some identities in combinatory analysis Ramanujan J. 49 505-513
[8]  
Yee AJ(2011)Combinatorial proof of an identity of Andrews and Yee Ramanujan J. 24 345-386
[9]  
Bailey WN(2010)The basic bilateral hypergeometric series and the mock theta functions Linear Algebra Appl. 433 2152-2160
[10]  
Chern S(1936)A novel extension of the Lagrange-Bürmann expansion formula J. London Math. Soc. 11 55-80