Nonminimal de Rham–Hodge operators and non-commutative residue

被引:0
作者
Jian Wang
Yong Wang
Aihui Sun
Sihui Chen
机构
[1] Tianjin University of Technology and Education,School of Science
[2] Northeast Normal University,School of Mathematics and Statistics
来源
Journal of Pseudo-Differential Operators and Applications | 2018年 / 9卷
关键词
Nonminimal de Rham–Hodge operator; Lower-dimensional volume; Noncommutative residue; 53G20; 53A30; 46L87;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove various Kastler–Kalau–Walze type theorems associated with nonminimal de Rham–Hodge operators on compact manifolds with boundary. Under the announced by Alain Connes, that the Wodzicki residue of the inverse square of the Dirac operator is proportional to the Einstein–Hilbert action of general relativity, one obtains the gravitational action in the case of four dimensional compact manifolds with flat boundary.
引用
收藏
页码:365 / 389
页数:24
相关论文
共 28 条
[1]  
Guillemin VW(1985)A new proof of Weyl’s formula on the asymptotic distribution of eigenvalues Adv. Math. 55 131-160
[2]  
Wodzicki M(1984)Local invariants of spectral asymmetry Invent. Math. 75 143-178
[3]  
Adler M(1979)On a trace functional for formal pseudo-differential operators and the symplectic structure of Korteweg-de Vries type equations Invent. Math. 50 219-248
[4]  
Connes A(1998)The action functional in Noncommutative geometry Commun. Math. Phys. 117 673-683
[5]  
Kastler D(1995)The Dirac operator and gravitation Commun. Math. Phys. 166 633-643
[6]  
Kalau W(1995)Gravity, noncommutative geometry and the Wodzicki residue J. Geom. Phys. 16 327-344
[7]  
Walze M(2003)Trace functionals for a class of pseudo-differential operators in Rn Math. Phys. Anal. Geom. 6 89-105
[8]  
Nicola F(2011)A note on the Einstein-Hilbert action and the Dirac operator on Rn J. Pseudo Differ. Oper. Appl. 2 303-315
[9]  
Battisti U(2011)Wodzicki residue for operators on manifolds with cylindrical ends Ann. Global Anal. Geom. 40 223-249
[10]  
Coriasco S(1996)The noncommutative residue for manifolds with boundary J. Funct. Anal. 142 1-31