Local and global bifurcations in magnetic resonance force microscopy

被引:0
作者
E. Hacker
O. Gottlieb
机构
[1] Technion – Israel Institute of Technology,Department of Mechanical Engineering
来源
Nonlinear Dynamics | 2020年 / 99卷
关键词
Magnetic resonance force microscopy; Nonlinear dynamics; Multiple-scale frequency shift estimate; Homoclinic bifurcation; Orbital instabilities;
D O I
暂无
中图分类号
学科分类号
摘要
The focus of this paper is on the investigation of local and global bifurcations in a continuum mechanics-based resonator model proposed for measurement of electron spin via magnetic resonance force microscopy (MRFM). The resonator model, derived using the extended Hamilton’s principle incorporating the Bloch equations for magnetization, is investigated analytically and numerically. Analysis of both adiabatic and non-adiabatic equilibrium configurations enables formulation of the dynamical system bifurcation structure and identification of the parameter space required for stable MRFM operation. A multiple-scales analysis of the limiting adiabatic model enables estimation of the local bifurcation thresholds for bistable solutions and prediction of the frequency shift that enables spin detection. Orbital instabilities of the adiabatic model reveal a global bifurcation structure where lengthy chaotic transients occur below a homoclinic jump-to-contact threshold which is determined via a Melnikov–Holmes analysis. Both local and global bifurcations are verified numerically in the non-adiabatic model and reveal a dense power spectra for the magnetic moments. The computation of the parameter space governing the model orbital instabilities enables a consistent estimation of robust MRFM operation conditions.
引用
收藏
页码:201 / 225
页数:24
相关论文
共 67 条
[11]  
Rugar D(2002)Chaotic solutions of the feedback driven Bloch equations Phys. Lett. A 302 17-undefined
[12]  
Budakian R(1995)Magnetic resonance force microscopy Rev. Mod. Phys. 67 249-undefined
[13]  
Mamin HJ(2002)Stationary cantilever vibrations in oscillating-cantilever-driven adiabatic reversals: magnetic-resonance-force-microscopy technique Phys. Rev. A 66 023405-undefined
[14]  
Chui BW(2004)Reduction of magnetic noise in magnetic resonance force microscopy Phys. Rev. B 69 212408-undefined
[15]  
Degen CL(2005)Theory of frequency shifts in the oscillating cantilever-driven adiabatic reversals technique as a function of the spin location Phys. Rev. B 72 224406-undefined
[16]  
Poggio M(2012)Nonlinear multimode dynamics and internal resonances of the scan process in noncontacting atomic force microscopy J. Appl. Phys. 112 074314-undefined
[17]  
Mamin HJ(1999)Melnikov-based dynamical analysis of microcantilevers in scanning probe microscopy Nonlinear Dyn. 20 197-undefined
[18]  
Rettner CT(2004)Nonlinear dynamics of vibrating microcantilevers in tapping-mode atomic force microscopy Phys. Rev. B 70 245419-undefined
[19]  
Rugar D(2016)Analytical control of homoclinic bifurcation of the hilltop saddle in a noncontact atomic force microcantilever Proc. IUTAM 19 19-undefined
[20]  
Stipe B(1978)Nonlinear flexural-flexural-torsional dynamics of inextensional beams. I. Equations of motion J. Struct. Mech. 6 437-undefined