Local and global bifurcations in magnetic resonance force microscopy

被引:0
作者
E. Hacker
O. Gottlieb
机构
[1] Technion – Israel Institute of Technology,Department of Mechanical Engineering
来源
Nonlinear Dynamics | 2020年 / 99卷
关键词
Magnetic resonance force microscopy; Nonlinear dynamics; Multiple-scale frequency shift estimate; Homoclinic bifurcation; Orbital instabilities;
D O I
暂无
中图分类号
学科分类号
摘要
The focus of this paper is on the investigation of local and global bifurcations in a continuum mechanics-based resonator model proposed for measurement of electron spin via magnetic resonance force microscopy (MRFM). The resonator model, derived using the extended Hamilton’s principle incorporating the Bloch equations for magnetization, is investigated analytically and numerically. Analysis of both adiabatic and non-adiabatic equilibrium configurations enables formulation of the dynamical system bifurcation structure and identification of the parameter space required for stable MRFM operation. A multiple-scales analysis of the limiting adiabatic model enables estimation of the local bifurcation thresholds for bistable solutions and prediction of the frequency shift that enables spin detection. Orbital instabilities of the adiabatic model reveal a global bifurcation structure where lengthy chaotic transients occur below a homoclinic jump-to-contact threshold which is determined via a Melnikov–Holmes analysis. Both local and global bifurcations are verified numerically in the non-adiabatic model and reveal a dense power spectra for the magnetic moments. The computation of the parameter space governing the model orbital instabilities enables a consistent estimation of robust MRFM operation conditions.
引用
收藏
页码:201 / 225
页数:24
相关论文
共 67 条
[1]  
Kuehn S(2008)Advances in mechanical detection of magnetic resonance J. Chem. Phys. 128 052208-566
[2]  
Hickman S(2010)Force-detected nuclear magnetic resonance: recent advances and future challenges Nanotechnology 21 342001-32
[3]  
Marohn J(1991)Noninductive detection of single-proton magnetic resonance Appl. Phys. Lett. 58 2854-7
[4]  
Poggio M(1992)Folded Stern–Gerlach experiment as a means for detecting nuclear magnetic resonance in individual nuclei Phys. Rev. Lett. 68 1124-19
[5]  
Degen CL(1992)Mechanical detection of magnetic resonance Nature 360 563-333
[6]  
Sidles J(2004)Single spin detection by magnetic resonance force microscopy Nature 430 329-22
[7]  
Sidles J(2009)Nanoscale magnetic resonance imaging Proc. Natl. Acad. Sci. U.S.A. 106 1313-220
[8]  
Rugar D(2001)Electron spin relaxation near a micron-size ferromagnet Phys. Rev. Lett. 87 277602-26
[9]  
Yannoni CS(2000)The Bloch equations in high-gradient magnetic resonance force microscopy: theory and experiment J. Magn. Reson. 143 106-448
[10]  
Sidles J(2004)Nonlinear dynamics of a magnetization subject to RF feedback field: new experimental evidence Comptes Rendus Chim. 7 329-123