Matrix equations models for nonlinear dynamic analysis of two-dimensional and three-dimensional RC structures with lateral load resisting cantilever elements
被引:0
|
作者:
论文数: 引用数:
h-index:
机构:
Assaf Shmerling
机构:
[1] Ben-Gurion University of the Negev,Department of Civil and Environmental Engineering
In control engineering and structural dynamics, mathematical models such as the state-space representation, equation of motion, and the phase plane are matrix equations describing the system equilibrium. This paper develops novel matrix equations models for linear/nonlinear dynamic analysis of reinforced concrete (RC) buildings with cantilever elements lateral load resisting systems (e.g., RC shear wall, RC core). The models offer a new approach for introducing two-dimensional and three-dimensional cantilever structures to control the theory’s state-space representation and structural dynamics’ equation of motion. The development primarily addresses the stiffness and mass matrices. The proposed displacement-related stiffness matrix of cantilever elements satisfies the necessary conditions of symmetricity and elemental boundary conditions. The nonlinear matrix structural analysis employs a smooth hysteretic model for deteriorating inelastic structures, referring to the relation between the bending moment and the bending curvature through the bending stiffness. The parameters controlling the cyclic behavior regard a composite RC cross section subject to gravitational load and bending simultaneously. The paper includes four examples that exemplify the practical utilization of the matrix equations models in analyzing two-dimensional and three-dimensional structures of linearly elastic and inelastic properties. The four examples demonstrated the idealized applicability of the matrix equations models for modal analysis, pushover analysis, and inelastic earthquake response analysis.