Sharp Spectral Inequalities for Fourth Order Differential Operators on Semi-Axis

被引:0
作者
Muhammad Danish Zia
Muhammad Usman
机构
[1] Lahore University of Management Sciences,Department of Mathematics
来源
Mathematical Physics, Analysis and Geometry | 2019年 / 22卷
关键词
Fourth order operators; Lieb-Thirring inequalities; Commutation method; Primary: 35P15; Secondary: 81Q10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider fourth order differential operators on semi-axis with Robin type boundary condition at zero. Using the commutation method we obtain sharp Lieb-Thirring inequalities for the negative eigenvalues of double multiplicity.
引用
收藏
相关论文
共 18 条
[1]  
Benguria R(2000)A simple proof of a theorem by Laptev and Weidl Math. Res. Lett. 7 195-203
[2]  
Loss M(2014)On some sharp spectral inequalities for Schrödinger operators on semiaxis Commun. Math. Phys. 326 531-541
[3]  
Exner P(2008)Lieb-thirring inequalities for higher order differential operators Math. Nachr. 281 199-213
[4]  
Laptev A(2006)Solitons and the removal of eigenvalues for fourth-order differential operators Int. Math. Res. Not. 2006 1-14
[5]  
Usman M(2015)On vertex conditions for elastic systems Phys. Lett. A. 379 1871-1876
[6]  
Förster C(2016)Lieb-thirring inequalities for generalized magnetic fields Bull. Math. Sci. 6 1-14
[7]  
Östensson J(1996)On Lieb-Thirring inequalities for higher order operators with critical and subcritical powers Commun. Math. Phys. 182 355-370
[8]  
Hoppe J(2015)Spectral inequalities for jacobi operators and related sharp Lieb-Thirring inequalities on the continuum Commun. Math. Phys. 334 473-505
[9]  
Laptev A(1978)On Schrödinger’s factorization method for Sturm-Liouville operators Proc. Roy. Soc. Edinburgh Sect. A 80 67-84
[10]  
Östensson J(undefined)undefined undefined undefined undefined-undefined