Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case

被引:3
作者
Carlos E. Kenig
Frank Merle
机构
[1] University of Chicago,Department of Mathematics
[2] Université de Cergy-Pontoise,Département de Mathématiques
来源
Inventiones mathematicae | 2006年 / 166卷
关键词
Cauchy Problem; Sobolev Inequality; Maximal Interval; Strichartz Estimate; Rigidity Theorem;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:645 / 675
页数:30
相关论文
共 31 条
[1]  
Aubin T.(1976)Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire J. Math. Pures Appl., IX. Sér. 55 269-296
[2]  
Bahouri H.(1999)High frequency approximation of solutions to critical nonlinear wave equations Am. J. Math. 121 131-175
[3]  
Gérard P.(1981)Instabilité des états stationnaires dans les équations de Schrödinger et de Klein–Gordon non linéaires C. R. Acad. Sci., Paris, Sér. I, Math. 293 489-492
[4]  
Berestycki H.(1999)Global well-posedness of defocusing critical nonlinear Schrödinger equation in the radial case J. Am. Math. Soc. 12 145-171
[5]  
Cazenave T.(1990)The Cauchy problem for the critical nonlinear Schrödinger equation in Nonlinear Anal., Theory Methods Appl. 14 807-836
[6]  
Bourgain J.(1998)Description du défaut de compacité de l’injection de Sobolev ESAIM Control Optim. Calc. Var. 3 213-233
[7]  
Cazenave T.(1977)On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations J. Math. Phys. 18 1794-1797
[8]  
Weissler F.B.(2000)On nonlinear Schrödinger equations Commun. Partial Differ. Equations 25 1827-1844
[9]  
Gérard P.(1998)Endpoint Strichartz estimates Am. J. Math. 120 955-980
[10]  
Glassey R.T.(2001)On the defect of compactness for the Strichartz estimates of the Schrödinger equations J. Differ. Equations 175 353-392