Analytical Model Coupling Ekman and Surface Layer Structure in Atmospheric Boundary Layer Flows

被引:0
作者
Ghanesh Narasimhan
Dennice F. Gayme
Charles Meneveau
机构
[1] Johns Hopkins University,
来源
Boundary-Layer Meteorology | 2024年 / 190卷
关键词
Atmospheric boundary layer; Geostrophic drag law; Large eddy simulation;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce an analytical model that describes the vertical structure of Ekman boundary layer flows coupled to the Monin-Obukhov Similarity Theory (MOST) surface layer representation, which is valid for conventionally neutral (CNBL) and stable (SBL) atmospheric conditions. The model is based on a self-similar profile of horizontal stress for both CNBL and SBL flows that merges the classic 3/2 power law profile with a MOST-consistent stress profile in the surface layer. The velocity profiles are then obtained from the Ekman momentum balance equation. The same stress model is used to derive a new self-consistent Geostrophic Drag Law (GDL). We determine the ABL height (h) using an equilibrium boundary layer height model and parameterize the surface heat flux for quasi-steady SBL flows as a function of a prescribed surface temperature cooling rate. The ABL height and GDL equations can then be solved together to obtain the friction velocity (u∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(u_*)$$\end{document} and the cross-isobaric angle (α0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _0$$\end{document}) as a function of known input parameters such as the Geostrophic wind speed and surface roughness (z0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(z_0)$$\end{document}. We show that the model predictions agree well with simulation data from the literature and newly generated Large Eddy Simulations (LES). These results indicate that the proposed model provides an efficient and relatively accurate self-consistent approach for predicting the mean wind velocity distribution in CNBL and SBL flows.
引用
收藏
相关论文
共 104 条
[1]  
Abkar M(2013)The effect of free-atmosphere stratification on boundary-layer flow and power output from very large wind farms Energies 6 2338-2361
[2]  
Porté-Agel F(2018)An analytical model for the effect of vertical wind veer on wind turbine wakes Energies 35 2121-2132
[3]  
Abkar M(1999)Surface length scales and shear stress: implications for land-atmosphere interaction over complex terrain Water Resour Res 814 95-130
[4]  
Sørensen JN(2017)Boundary-layer development and gravity waves in conventionally neutral wind farms J Fluid Mech 101 147-161
[5]  
Porté-Agel F(1975)Geostrophic drag and heat transfer relations for the atmospheric boundary layer Q J R Meteorol Soc 70 116-123
[6]  
Albertson JD(2014)A new analytical model for wind-turbine wakes Renew Energy 163 351-355
[7]  
Parlange MB(2017)A cautionary note on the use of Monin–Obukhov similarity theory in very high-resolution large-eddy simulations Bound-Layer Meteorol 118 247-272
[8]  
Allaerts D(2006)An intercomparison of large-eddy simulations of the stable boundary layer Bound-Layer Meteorol 30 1961-1969
[9]  
Meyers J(2013)Lidar-observed stress vectors and veer in the atmospheric boundary layer J Atmos Oceanic Tech 67 3095-3102
[10]  
Arya SPS(1962)The vertical distribution of wind and turbulent exchange in a neutral atmosphere J Geophys Res (1896-1977) 17 025105-538