Integration of AI in surgical decision support: improving clinical judgment

被引:1
作者
Balch, Jeremy A. [1 ]
Shickel, Benjamin [2 ]
Bihorac, Azra [2 ]
Upchurch Jr, Gilbert R. [1 ]
Loftus, Tyler J. [1 ,3 ]
机构
[1] Univ Florida, Dept Surg, Gainesville, FL 32610 USA
[2] Univ Florida, Dept Nephrol, Gainesville, FL USA
[3] Univ Florida, Div Acute Care Surg, Dept Surg, Coll Med, 600 SW Archer Rd,POB 100119, Gainesville, FL 32610 USA
来源
GLOBAL SURGICAL EDUCATION - JOURNAL OF THE ASSOCIATION FOR SURGICAL EDUCATION | 2024年 / 3卷 / 01期
关键词
Decision support; Artificial intelligence; Machine learning; ARTIFICIAL-INTELLIGENCE; SURGERY;
D O I
10.1007/s44186-024-00257-2
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
Though early in its development, artificial Intelligence (AI)-enabled clinical decision support (CDS) systems show promise in improving surgical decision-making. Applications for AI have been proposed in all surgical specialties and cover pre-operative risk assessment tools, intra-operative monitoring and decision-making, and post-operative patient management. These AI systems find patterns in data, with sources ranging from radiology, pathology, and intra-operative images to the human genome and real-time physiological parameters. They may improve hospital workflow through information extraction, documentation, and summarization. However, these new tools require validation in real-world clinical settings, adherence to standardized reporting guidelines, and a comprehensive evaluation of both performance and fairness metrics. In overcoming these limitations, AI is poised to offer data-driven insights to enhancing patient care.
引用
收藏
页数:6
相关论文
共 55 条
[1]  
Ayatollahi H, 2019, HEALTHC INFORM RES, V25, P289
[2]   Videomics of the Upper Aero-Digestive Tract Cancer: Deep Learning Applied to White Light and Narrow Band Imaging for Automatic Segmentation of Endoscopic Images [J].
Azam, Muhammad Adeel ;
Sampieri, Claudio ;
Ioppi, Alessandro ;
Benzi, Pietro ;
Giordano, Giorgio Gregory ;
De Vecchi, Marta ;
Campagnari, Valentina ;
Li, Shunlei ;
Guastini, Luca ;
Paderno, Alberto ;
Moccia, Sara ;
Piazza, Cesare ;
Mattos, Leonardo S. ;
Peretti, Giorgio .
FRONTIERS IN ONCOLOGY, 2022, 12
[3]   Actionable artificial intelligence: Overcoming barriers to adoption of prediction tools [J].
Balch, Jeremy A. ;
Loftus, Tyler J. .
SURGERY, 2023, 174 (03) :730-732
[4]   Machine learning for patient risk stratification: standing on, or looking over, the shoulders of clinicians? [J].
Beaulieu-Jones, Brett K. ;
Yuan, William ;
Brat, Gabriel A. ;
Beam, Andrew L. ;
Weber, Griffin ;
Ruffin, Marshall ;
Kohane, Isaac S. .
NPJ DIGITAL MEDICINE, 2021, 4 (01)
[5]   Surgical Risk Is Not Linear: Derivation and Validation of a Novel, User-friendly, and Machine-learning-based Predictive OpTimal Trees in Emergency Surgery Risk (POTTER) Calculator [J].
Bertsimas, Dimitris ;
Dunn, Jack ;
Velmahos, George C. ;
Kaafarani, Haytham M. A. .
ANNALS OF SURGERY, 2018, 268 (04) :574-583
[6]   MySurgeryRisk: Development and Validation of a Machine-learning Risk Algorithm for Major Complications and Death After Surgery [J].
Bihorac, Azra ;
Ozrazgat-Baslanti, Tezcan ;
Ebadi, Ashkan ;
Motaei, Amir ;
Madkour, Mohcine ;
Pardalos, Panagote M. ;
Lipori, Gloria ;
Hogan, William R. ;
Efron, Philip A. ;
Moore, Frederick ;
Moldawer, Lyle L. ;
Wang, Daisy Zhe ;
Hobson, Charles E. ;
Rashidi, Parisi ;
Li, Xiaolin ;
Momcilovic, Petar .
ANNALS OF SURGERY, 2019, 269 (04) :652-662
[7]   A Review on the Current Applications of Artificial Intelligence in the Operating Room [J].
Birkhoff, David C. ;
van Dalen, Anne Sophie H. M. ;
Schijven, Marlies P. .
SURGICAL INNOVATION, 2021, 28 (05) :611-619
[8]   Comparing clinical judgment with the MySurgeryRisk algorithm for preoperative risk assessment: A pilot usability study [J].
Brennan, Meghan ;
Puri, Sahil ;
Ozrazgat-Baslanti, Tezcan ;
Feng, Zheng ;
Ruppert, Matthew ;
Hashemighouchani, Haleh ;
Momcilovic, Petar ;
Li, Xiaolin ;
Wang, Daisy Zhe ;
Bihorac, Azra .
SURGERY, 2019, 165 (05) :1035-1045
[9]   Development and validation of machine learning models to identify high-risk surgical patients using automatically curated electronic health record data (Pythia): A retrospective, single-site study [J].
Corey, Kristin M. ;
Kashyap, Sehj ;
Lorenzi, Elizabeth ;
Lagoo-Deenadayalan, Sandhya A. ;
Heller, Katherine ;
Whalen, Krista ;
Balu, Suresh ;
Heflin, Mitchell T. ;
McDonald, Shelley R. ;
Swaminathan, Madhav ;
Sendak, Mark .
PLOS MEDICINE, 2018, 15 (11)
[10]   Investigating the use of data-driven artificial intelligence in computerised decision support systems for health and social care: A systematic review [J].
Cresswell, Kathrin ;
Callaghan, Margaret ;
Khan, Sheraz ;
Sheikh, Zakariya ;
Mozaffar, Hajar ;
Sheikh, Aziz .
HEALTH INFORMATICS JOURNAL, 2020, 26 (03) :2138-2147