Chiti-type Reverse Hölder Inequality and Torsional Rigidity Under Integral Ricci Curvature Condition

被引:0
作者
Hang Chen
机构
[1] Northwestern Polytechnical University,School of Mathematics and Statistics
来源
Potential Analysis | 2022年 / 56卷
关键词
Isoperimetric inequalities; Eigenfunction; Integral Ricci curvature; Reverse Hölder inequality; Torsional rigidity; 35P15; 53C21; 58J60; 60J65;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove a reverse Hölder inequality for the eigenfunction of the Dirichlet problem on domains of a compact Riemannian manifold with the integral Ricci curvature condition. We also prove an isoperimetric inequality for the torsional rigidity of such domains. These results extend some recent work of Gamara et al. (Open Math. 13(1), 557–570, 2015) and Colladay et al. (J. Geom. Anal. 28(4), 3906–3927, 2018) from the pointwise lower Ricci curvature bound to the integral Ricci curvature condition. We also extend the results from Laplacian to p-Laplacian.
引用
收藏
页码:333 / 349
页数:16
相关论文
共 57 条
[1]  
Aubry E(2007)Finiteness of π1 and geometric inequalities in almost positive Ricci curvature Ann. Sci. École Norm. Sup. (4) 40 675-695
[2]  
Aubry E(2009)Diameter pinching in almost positive Ricci curvature Comment. Math. Helv. 84 223-233
[3]  
Bérard P(1982)Inégalités isopérimétriques et applications Ann. Sci. École Norm. Sup. (4) 15 513-541
[4]  
Meyer D(2014)On torsional rigidity and principal frequencies: an invitation to the Kohler-Jobin rearrangement technique ESAIM Control Optim. Calc. Var. 20 315-338
[5]  
Brasco L(2015)Maximizing mean exit-time of the Brownian motion on Riemannian manifolds Monatsh. Math. 176 551-570
[6]  
Cadeddu L(1982)An isoperimetric inequality for the eigenfunctions of linear second order elliptic operators Boll. Un. Mat. Ital. A (6) 1 145-151
[7]  
Gallot S(1982)A reverse Hölder inequality for the eigenfunctions of linear second order elliptic operators Z. Angew. Math. Phys. 33 143-148
[8]  
Loi A(2018)Comparison results, exit time moments, and eigenvalues on Riemannian manifolds with a lower Ricci curvature bound J. Geom. Anal. 28 3906-3927
[9]  
Chiti G(2000)Integral pinching theorems Manuscripta Math. 101 143-152
[10]  
Chiti G(2004)A heat kernel lower bound for integral Ricci curvature Michigan Math. J. 52 61-69