A note on signs of Fourier coefficients of two cusp forms

被引:0
作者
S Banerjee
机构
[1] Harish-Chandra Research Institute,
[2] HBNI,undefined
来源
Proceedings - Mathematical Sciences | 2018年 / 128卷
关键词
Sign changes; Fourier coefficients; modular forms; Rankin–Selberg ; -function; Primary: 11F30; Secondary: 11M06;
D O I
暂无
中图分类号
学科分类号
摘要
Kohnen and Sengupta (Proc. Am. Math. Soc.137(11) (2009) 3563–3567) showed that if two Hecke eigencusp forms of weight k1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_1$$\end{document} and k2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_2$$\end{document} respectively, with 1<k1<k2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<k_1<k_2$$\end{document} over Γ0(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _0({N})$$\end{document}, have totally real algebraic Fourier coefficients {a(n)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lbrace a(n) \rbrace $$\end{document} and {b(n)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lbrace b(n) \rbrace $$\end{document} respectively for n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 1$$\end{document} with a(1)=1=b(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(1)=1=b(1)$$\end{document}, then there exists an element σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} of the absolute Galois group Gal(Q¯/Q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{Gal}({\bar{\mathbb {Q}}}/{\mathbb {Q}})$$\end{document} such that a(n)σb(n)σ<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(n)^{\sigma } b(n)^{\sigma } < 0$$\end{document} for infinitely many n. Later Gun et al. (Arch. Math. (Basel)105(5) (2015) 413–424) extended their result by showing that if two Hecke eigen cusp forms, with 1<k1<k2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<k_1<k_2$$\end{document}, have real Fourier-coefficients {a(n)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lbrace a(n)\rbrace $$\end{document} and {b(n)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lbrace b(n)\rbrace $$\end{document} for n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 1$$\end{document} and a(1)b(1)≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(1)b(1) \ne 0$$\end{document}, then there exists infinitely many n such that a(n)b(n)>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(n)b(n) > 0$$\end{document} and infinitely many n such that a(n)b(n)<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(n)b(n) < 0$$\end{document}. When k1=k2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_1=k_2$$\end{document}, the simultaneous sign changes of Fourier coefficients of two normalized Hecke eigen cusp forms follow from an earlier work of Ram Murty (Math. Ann.262 (1983) 431–446). In this note, we compare the signs of the Fourier coefficients of two cusp forms simultaneously for the congruence subgroup Γ0(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _0({N})$$\end{document} where the coefficients lie in an arithmetic progression. Next, we consider an analogous question for the particular sparse sequences of Fourier coefficients of normalized Hecke eigencusp forms for the full modular group.
引用
收藏
相关论文
共 17 条
[1]  
Gun S(2015)Simultaneous sign change of Fourier-coefficients of two cusp forms Arch. Math. (Basel) 105 413-424
[2]  
Kohnen W(2003)On the signs of Fourier coefficients of cusp forms The Ramanujan J. 7 269-277
[3]  
Rath P(2014)Sign changes of Fourier coefficients of cusp forms supported on prime power indices Int. J. Number Theory 10 1921-1927
[4]  
Knopp M(2009)Signs of Fourier coefficients of two cusp forms of different weights Proc. Am. Math. Soc. 137 3563-3567
[5]  
Kohnen W(1906)Über einen Satz von Tschebyschef Math. Ann. 61 527-550
[6]  
Pritbikin W(2009)The average behaviour of Fourier coefficients of cusp forms over sparse sequences Proc. Am. Math. Soc. 8 2557-2565
[7]  
Kohnen W(2013)A short note on sign changes Proc. Indian Acad. Sci. (Math. Sci.) 123 315-320
[8]  
Martin Y(1983)Oscillations of the Fourier coefficients of modular forms Math. Ann. 262 431-446
[9]  
Kohnen W(undefined)undefined undefined undefined undefined-undefined
[10]  
Sengupta J(undefined)undefined undefined undefined undefined-undefined