Greedy energy minimization can count in binary: point charges and the van der Corput sequence

被引:0
作者
Florian Pausinger
机构
[1] Queen’s University Belfast,School of Mathematics and Physics
来源
Annali di Matematica Pura ed Applicata (1923 -) | 2021年 / 200卷
关键词
Riesz energy; Energy minimization; van der Corput sequence; Leja sequence; Universality; 11B83; 11K31; 31C15; 49S05; 52C25;
D O I
暂无
中图分类号
学科分类号
摘要
This paper establishes a connection between a problem in Potential Theory and Mathematical Physics, arranging points so as to minimize an energy functional, and a problem in Combinatorics and Number Theory, constructing ’well-distributed’ sequences of points on [0, 1). Let f:[0,1]→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:[0,1] \rightarrow {\mathbb {R}}$$\end{document} be (1) symmetric f(x)=f(1-x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x) = f(1-x)$$\end{document}, (2) twice differentiable on (0, 1), and (3) such that f′′(x)>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f''(x)>0$$\end{document} for all x∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \in (0,1)$$\end{document}. We study the greedy dynamical system, where, given an initial set {x0,…,xN-1}⊂[0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{x_0, \ldots , x_{N-1}\} \subset [0,1)$$\end{document}, the point xN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_N$$\end{document} is obtained as xN=argminx∈[0,1)∑k=0N-1f(|x-xk|).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} x_{N} = \arg \min _{x \in [0,1)} \sum _{k=0}^{N-1}{f(|x-x_k|)}. \end{aligned}$$\end{document}We prove that if we start this construction with the single element x0=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0=0$$\end{document}, then all arising constructions are permutations of the van der Corput sequence (counting in binary and reflected about the comma): greedy energy minimization recovers the way we count in binary. This gives a new construction of the classical van der Corput sequence. The special case f(x)=1-log(2sin(πx))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x) = 1-\log (2 \sin (\pi x))$$\end{document} answers a question of Steinerberger. Interestingly, the point sets we derive are also known in a different context as Leja sequences on the unit disk.
引用
收藏
页码:165 / 186
页数:21
相关论文
共 44 条
[1]  
Bialas-Ciez L(2012)Pseudo Leja sequences Ann. Mat. Pura Appl. 191 53-75
[2]  
Calvi J-P(2015)The crystallization conjecture: a review EMS Surv. Math. Sci. 2 225-306
[3]  
Blanc X(2008)Asymptotics for discrete weighted minimal Riesz energy problems on rectifiable sets Trans. Am. Math. Soc. 360 1559-1580
[4]  
Lewin M(2011)Optimal discrete Riesz energy and Discrepancy Unif. Distrib. Theory 6 207-220
[5]  
Borodachov S(2015)Distributing many points on spheres: minimal energy and designs J. Complex. 31 293-326
[6]  
Hardin D(2012)Discrete energy asymptotics on a Riemannian circle Unif. Distrib. Theory 7 77-108
[7]  
Saff E(1993)Discrépance et diaphonie en dimension un Acta Arith. 63 103-141
[8]  
Brauchart J(2013)Observed asymptotic differences in energies of stable and minimal point configurations on J. Math. Phys. 54 101901, 20 pp-148
[9]  
Brauchart J(2007) and the role of defects J. Am. Math. Soc. 20 99-182
[10]  
Grabner P(1981)Universally optimal distribution of points on spheres Bull. Soc. Math. Fr. 109 143-822