Regularity in weighted oriented graphs

被引:0
作者
Mousumi Mandal
Dipak Kumar Pradhan
机构
[1] Indian Institute of Technology,
来源
Indian Journal of Pure and Applied Mathematics | 2021年 / 52卷
关键词
Weighted oriented graph; labeled hypergraph; edge ideal; Castelnuovo-Mumford regularity; 13D02; 13F20; 13C10; 05C22; 05E40; 05C20;
D O I
暂无
中图分类号
学科分类号
摘要
Let D be a weighted oriented graph with the underlying graph G and I(D), I(G) be the edge ideals corresponding to D and G respectively. We show that the regularity of edge ideal of a certain class of weighted oriented graph remains same even after adding certain kind of new edges to it. We also establish the relationship between the regularity of edge ideal of weighted oriented path and cycle with the regularity of edge ideal of their underlying graph when vertices of V+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V^+$$\end{document} are sinks.
引用
收藏
页码:1055 / 1071
页数:16
相关论文
共 37 条
  • [1] Alilooee A(2015)On the resolution of path ideals of cycles Comm. Algebra 43 5413-5433
  • [2] Faridi S(2015)Regularity of powers of forests and cycles J. Algebraic Combin. 42 1077-1095
  • [3] Beyarslan S(2011)Path ideals of rooted trees and their graded Betti numbers J. Comb. Theory Ser. A 118 2411-2425
  • [4] Huy T(1990)Minimal resolutions of some monomial ideals J. Algebra 129 1-25
  • [5] Trung T(2001)On the resolution of ideals of fat points J. Algebra 242 92-108
  • [6] Nam N(2009)Splittings of monomial ideals Proc. Amer. Math. Soc. 137 3271-3282
  • [7] Bouchat RR(2016)Depth and regularity of powers of sums of ideals Math. Z. 282 819-838
  • [8] Hà HT(2019)Edge ideals of oriented graphs Internat. J. Algebra Comput. 29 535-559
  • [9] O’Keefe A(2016)Betti numbers of path ideals of trees Comm. Algebra 44 5376-5394
  • [10] Eliahou S(2013)Hypergraphs and regularity of square-free monomial ideals Internat. J. Algebra Comput. 23 1573-1590