Enhancing the interface stability of Li1.3Al0.3Ti1.7(PO4)3 and lithium metal by amorphous Li1.5Al0.5Ge1.5(PO4)3 modification

被引:0
|
作者
Lianchuan Li
Ziqi Zhang
Linshan Luo
Run You
Jinlong Jiao
Wei Huang
Jianyuan Wang
Cheng Li
Xiang Han
Songyan Chen
机构
[1] Xiamen University,Department of Physics, Jiujiang Research Institute, and Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices
[2] Nanjing Forestry University,College of Materials Science and Engineering
来源
Ionics | 2020年 / 26卷
关键词
All-solid-state lithium battery; Li; Al; Ti; (PO; ); Li; Al; Ge; (PO; ); protective layer; Stability against lithium; Radio frequency sputtering;
D O I
暂无
中图分类号
学科分类号
摘要
Li1.3Al0.3Ti1.7(PO4)3 (LATP) has become the focus of research because of its high ionic conductivity, high oxidation voltage, and low air sensitivity. However, Ti4+ is easily reduced by Li metal. In this paper, amorphous Li1.5Al0.5Ge1.5(PO4)3 (a-LAGP) is introduced as an interface modification layer, because LAGP has the small electrochemical potential difference and Ge4+ is more difficult to be reduced by Li. Radio frequency sputtering (RF sputtering) is adopted to modify the a-LAGP thickness less than 100 nm. Compared with crystalline LAGP layer, a-LAGP has a better effect on improving the interface stability of LATP and Li. With the a-LAGP film, the Li/a-LAGP/LATP/a-LAGP/Li symmetrical cell is still stable after 100 cycles with the over potential changing from 1 V to 3 V. The probable mechanism of the good stability between a-LAGP and Li are discussed.
引用
收藏
页码:3815 / 3821
页数:6
相关论文
共 50 条
  • [21] Preparation and electrochemical properties of a ceramic solid electrolyte with high ionic conductivity, Li1.3Al0.3Ti1.7(PO4)3
    Yin, Jianhong
    Zhang, Haibang
    Zeng, Zhaocheng
    Xu, Guoqian
    Guo, Pingchun
    Jiang, Hedong
    Li, Jiake
    Wang, Yan-xiang
    Yu, Shijin
    Zhu, Hua
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 988
  • [22] Influence of Cobalt Introduction on the Phase Equilibrium and Sintering Behavior of Lithium-Ion Conductor Li1.3Al0.3Ti1.7(PO4)3
    Miyoshi, Shogo
    Nishihara, Yoshihiko
    Takada, Kazunori
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (06) : 7515 - 7522
  • [23] High Ionic Conductivity of Sb2O3 Added Li1.3Al0.3Ti1.7(PO4)3 Ceramic for Lithium-Ion Battery Applications
    Swati G. Bansod
    A. V. Deshpande
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2025, 95 (2) : 241 - 250
  • [24] Properties of aerosol deposited NASICON-type Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte thin films
    Inada, Ryoji
    Ishida, Kei-ichi
    Tojo, Masaru
    Okada, Takayuki
    Tojo, Tomohiro
    Sakurai, Yoji
    CERAMICS INTERNATIONAL, 2015, 41 (09) : 11136 - 11142
  • [25] High-temperature X-ray analysis of phase evolution in lithium ion conductor Li1.5Al0.5Ge1.5(PO4)3
    He Kun
    Wang Yanhang
    Zu Chengkui
    Liu Yonghua
    Zhao Huifeng
    Chen Jiang
    Han Bin
    Ma Juanrong
    MATERIALS CHARACTERIZATION, 2013, 80 : 86 - 91
  • [26] Ultrafast crystallization and sintering of Li1.3Al0.3Ti1.7(PO4)3 glass through flash sinter-crystallization
    Campos, Joao V.
    Lavagnini, Isabela R.
    Zallocco, Vinicius M.
    Jesus, Lilian M.
    Rodrigues, Ana C. M.
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2024, 107 (03) : 1806 - 1821
  • [27] Promising high-conductivity Li1.5Al0.5Ge1.5(PO4)3 solid electrolytes: the effect of crystallization temperature on the microstructure and transport properties
    Pershina, S. V.
    Pankratov, A. A.
    Vovkotrub, E. G.
    Antonov, B. D.
    IONICS, 2019, 25 (10) : 4713 - 4725
  • [28] Enhanced Electrochemical Performance of Ni-Rich Cathode Materials with Li1.3Al0.3Ti1.7(PO4)3 Coating
    Qu, Xingyu
    Yu, Zhenlu
    Ruan, Dingshan
    Dou, Aichun
    Su, Mingru
    Zhou, Yu
    Liu, Yunjian
    Chu, Dewei
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (15): : 5819 - 5830
  • [29] Foaming suppression during the solid-state synthesis of the Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte
    Shindrov, Alexander A.
    Skachilova, Maria G.
    Gerasimov, Konstantin B.
    Kosova, Nina, V
    SOLID STATE SCIENCES, 2024, 154
  • [30] Fabrication and electrochemical properties of Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes by sol-gel method
    Yi, Eun-jeong
    Yoon, Keun-young
    Jung, Hyun-Ah
    Nakayama, Tadachika
    Ji, Mi-jung
    Hwang, Haejin
    APPLIED SURFACE SCIENCE, 2019, 473 : 622 - 626