Enhancing the interface stability of Li1.3Al0.3Ti1.7(PO4)3 and lithium metal by amorphous Li1.5Al0.5Ge1.5(PO4)3 modification

被引:0
|
作者
Lianchuan Li
Ziqi Zhang
Linshan Luo
Run You
Jinlong Jiao
Wei Huang
Jianyuan Wang
Cheng Li
Xiang Han
Songyan Chen
机构
[1] Xiamen University,Department of Physics, Jiujiang Research Institute, and Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices
[2] Nanjing Forestry University,College of Materials Science and Engineering
来源
Ionics | 2020年 / 26卷
关键词
All-solid-state lithium battery; Li; Al; Ti; (PO; ); Li; Al; Ge; (PO; ); protective layer; Stability against lithium; Radio frequency sputtering;
D O I
暂无
中图分类号
学科分类号
摘要
Li1.3Al0.3Ti1.7(PO4)3 (LATP) has become the focus of research because of its high ionic conductivity, high oxidation voltage, and low air sensitivity. However, Ti4+ is easily reduced by Li metal. In this paper, amorphous Li1.5Al0.5Ge1.5(PO4)3 (a-LAGP) is introduced as an interface modification layer, because LAGP has the small electrochemical potential difference and Ge4+ is more difficult to be reduced by Li. Radio frequency sputtering (RF sputtering) is adopted to modify the a-LAGP thickness less than 100 nm. Compared with crystalline LAGP layer, a-LAGP has a better effect on improving the interface stability of LATP and Li. With the a-LAGP film, the Li/a-LAGP/LATP/a-LAGP/Li symmetrical cell is still stable after 100 cycles with the over potential changing from 1 V to 3 V. The probable mechanism of the good stability between a-LAGP and Li are discussed.
引用
收藏
页码:3815 / 3821
页数:6
相关论文
共 50 条
  • [1] Enhancing the interface stability of Li1.3Al0.3Ti1.7(PO4)3 and lithium metal by amorphous Li1.5Al0.5Ge1.5(PO4)3 modification
    Li, Lianchuan
    Zhang, Ziqi
    Luo, Linshan
    You, Run
    Jiao, Jinlong
    Huang, Wei
    Wang, Jianyuan
    Li, Cheng
    Han, Xiang
    Chen, Songyan
    IONICS, 2020, 26 (08) : 3815 - 3821
  • [2] Lithium storage capability of lithium ion conductor Li1.5Al0.5Ge1.5(PO4)3
    Feng, J. K.
    Lu, L.
    Lai, M. O.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 501 (02) : 255 - 258
  • [3] Synthesis and conductivity studies of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte
    Kunshina, G. B.
    Bocharova, I. V.
    Lokshin, E. P.
    INORGANIC MATERIALS, 2016, 52 (03) : 279 - 284
  • [4] Increase in grain boundary ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 by adding excess lithium
    Chung, Habin
    Kang, Byoungwoo
    SOLID STATE IONICS, 2014, 263 : 125 - 130
  • [5] Surface modification of Li3PO4 to Li1.3Al0.3Ti1.7(PO4)3 by wet chemical process and its sintering behavior
    Ishii, Kento
    Taniguchi, Yuri
    Miura, Akira
    Miyoshi, Shogo
    Takada, Kazunori
    Kawamura, Go
    Muto, Hiroyuki
    Matsuda, Atsunori
    Fuji, Masayoshi
    Uchikoshi, Tetsuo
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2024, 132 (06) : 257 - 266
  • [6] Enhanced electrochemical performance of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte by anion doping
    Jingrui Kang
    Xu Guo
    Rui Gu
    Honglei Hao
    Yi Tang
    Jiahui Wang
    Li Jin
    Hongfei Li
    Xiaoyong Wei
    Nano Research, 2024, 17 : 1465 - 1472
  • [7] Comparing the Effects of Mechanical Activation and Fusible Additives on the Ionic Conductivity of Li1.3Al0.3Ti1.7(PO4)3
    A. A. Shindrov
    N. V. Kosova
    Russian Journal of Electrochemistry, 2023, 59 : 222 - 228
  • [8] Lithium conducting solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 obtained via solution chemistry
    Duluard, Sandrine
    Paillassa, Aude
    Puech, Laurent
    Vinatier, Philippe
    Turq, Viviane
    Rozier, Patrick
    Lenormand, Pascal
    Taberna, Pierre-Louis
    Simon, Patrice
    Ansart, Florence
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2013, 33 (06) : 1145 - 1153
  • [9] Boron group element doping of Li1.5Al0.5Ge1.5(PO4)3based on microwave sintering
    Yan, Binggong
    Kang, Lei
    Kotobuki, Masashi
    He, Linchun
    Liu, Bin
    Jiang, Kaiyong
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2021, 25 (02) : 527 - 534
  • [10] Understanding the Evolution of the Structure and Electrical Properties during Crystallization of Li1.5Al0.5Ge1.5(PO4)3 and Li1.5Sc0.17Al0.33Ge1.5(PO4)3 NASICON-Type Glass Ceramics
    Dias, Jeferson A.
    Santagneli, Silvia H.
    Rodrigues, Ana C. M.
    Boas, Naiza V.
    Messaddeq, Younes
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (13) : 6207 - 6225