The Fourier transform of multiradial functions

被引:0
作者
Frédéric Bernicot
Loukas Grafakos
Yandan Zhang
机构
[1] Laboratoire Jean Leray,Department of Mathematics
[2] CNRS,Department of Mathematics
[3] Université de Nantes,undefined
[4] University of Missouri,undefined
[5] Zhejiang University of Science and Technology,undefined
来源
Monatshefte für Mathematik | 2014年 / 175卷
关键词
Multiradial function; Fourier transform; 42B10; 42B37;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain an exact formula for the Fourier transform of multiradial functions, i.e., functions of the form Φ(x)=ϕ(|x1|,⋯,|xm|),xi∈Rni\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi (x)=\phi (|x_1|, \dots , |x_m|), x_i\in \mathbf R^{n_i}$$\end{document}, in terms of the Fourier transform of the function ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} on Rr1×⋯×Rrm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf R^{r_1}\times \cdots \times \mathbf R^{r_m}$$\end{document}, where ri\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_i$$\end{document} is either 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1$$\end{document} or 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2$$\end{document}.
引用
收藏
页码:43 / 64
页数:21
相关论文
共 14 条
[1]  
Campbell LL(2002)Fourier and Hankel bandlimited functions Sampl. Theory Signal Image Process. 1 25-32
[2]  
Grafakos L(2001)The Marcinkiewicz multiplier condition for bilinear operators Studia Math. 146 115-156
[3]  
Kalton N(2013)On Fourier transforms of radial functions and distributions J. Fourier Anal Appl. 19 167-179
[4]  
Grafakos L(1998)On asymptotics for a class of radial Fourier transforms Z. Anal. Anwendungen 17 103-114
[5]  
Teschl G(1989)On nonuniform sampling expansions using entire interpolation functions, and on the stability of Bessel-type sampling expansion IEEE Tran. Inf. Theory 35 549-557
[6]  
Liflyand E(1996)Operators on radial functions J. Comp. Appl. Math. 73 257-270
[7]  
Trebels W(1992)The Fourier-Bessel series representation of the pseudo-differential operator Proc. Am. Math. Soc. 115 969-976
[8]  
Rawn MD(1979)On homogeneous rotation invariant distributions and the Laplace operator Ann. Polon. Math. 36 249-259
[9]  
Schaback R(1966)A distributional Hankel transform J. SIAM Appl. Math. 14 561-576
[10]  
Wu Z(undefined)undefined undefined undefined undefined-undefined