Antichains in partially ordered sets of singular cofinality

被引:0
作者
Assaf Rinot
机构
[1] Tel Aviv University,School of Mathematical Sciences
来源
Archive for Mathematical Logic | 2007年 / 46卷
关键词
Poset; Antichain; Singular cofinality; 03E04; 03E35; 06A07;
D O I
暂无
中图分类号
学科分类号
摘要
In their paper from 1981, Milner and Sauer conjectured that for any poset \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle P,\le\rangle$$\end{document}, if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$cf(P,\le)=\lambda>cf(\lambda)=\kappa$$\end{document}, then P must contain an antichain of size κ. We prove that for λ > cf(λ) = κ, if there exists a cardinal μ < λ such that cov(λ, μ, κ, 2) = λ, then any poset of cofinality λ contains λκ antichains of size κ. The hypothesis of our theorem is very weak and is a consequence of many well-known axioms such as GCH, SSH and PFA. The consistency of the negation of this hypothesis is unknown.
引用
收藏
页码:457 / 464
页数:7
相关论文
共 12 条
  • [1] Gorelic I.(2006)External cofinalities and the antichain condition in partial orders Ann. Pure Appl. Logic 140 104-109
  • [2] Hajnal A.(1991)On Stud. Sci. Math. Hung. 26 467-470
  • [3] Milner E.C.(1986)-independent subsets of a closure Discrete Math. 59 61-67
  • [4] Hajnal A.(1985)Complete subgraphs of infinite multipartite graphs and antichains in partially ordered sets Algebra Universalist 21 25-32
  • [5] Sauer N.(1983)On the independent subsets of a closure system with singular dimension Proc. Lond. Math. Soc. 46 454-470
  • [6] Milner E.C.(1981)The cofinality of a partially ordered set Discrete Math. 35 165-171
  • [7] Pouzet M.(2006)Remarks on the cofinality of a partially ordered set, and a generalization of König’s lemma Ann. Pure Appl. Logic 140 110-119
  • [8] Milner E.C.(undefined)On the consistency strength of the Milner–Sauer conjecture undefined undefined undefined-undefined
  • [9] Prikry K.(undefined)undefined undefined undefined undefined-undefined
  • [10] Milner E.C.(undefined)undefined undefined undefined undefined-undefined