An optimization technique for the solution of the Signorini problem using the boundary element method

被引:0
|
作者
A. Leontiev
W. Huacasi
J. Herskovits
机构
[1] Institute of Mathematics,
[2] Federal University of Rio de Janeiro,undefined
[3] 21945 970,undefined
[4] Rio de Janeiro,undefined
[5] RJ,undefined
[6] Brazil e-mail: anatoli@dmm.im.ufrj.br,undefined
[7] Mathematical Department,undefined
[8] State University of Norte Fluminense,undefined
[9] 28015 620,undefined
[10] Campos dos Goytacazes,undefined
[11] RJ,undefined
[12] Brazil e-mail: wilma@uenf.br,undefined
[13] Mechanical Engineering Program,undefined
[14] COPPE/Federal University of Rio de Janeiro,undefined
[15] 21945 970,undefined
[16] Rio de Janeiro,undefined
[17] RJ,undefined
[18] Brazil e-mail: jose@com.ufrj.br,undefined
来源
Structural and Multidisciplinary Optimization | 2002年 / 24卷
关键词
Key words: Signorini problem, boundary elements method, linear complementarity problem, bilinear optimization program, interior point algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
We present an optimization technique for the numerical solution of the Signorini problem for the Laplacian via boundary element discretization. The discretized problem is a mixed linear complementarity problem with potential and flux at the contact region as complementary variables. This complementarity problem is reformulated as a bilinear optimization program, which we solve with an interior point algorithm. Numerical results for a test problem and a comparison with another solution technique are given.
引用
收藏
页码:72 / 77
页数:5
相关论文
共 50 条