MacNeille transferability and stable classes of Heyting algebras

被引:0
|
作者
Guram Bezhanishvili
John Harding
Julia Ilin
Frederik Möllerström Lauridsen
机构
[1] New Mexico State University,Department of Mathematical Science
[2] University of Amsterdam,Institute for Logic, Language and Computation
来源
Algebra universalis | 2018年 / 79卷
关键词
Transferability; MacNeille completion; Distributive lattice; Heyting algebra; 06D20; 06B23; 06E15;
D O I
暂无
中图分类号
学科分类号
摘要
A lattice P is transferable for a class of lattices K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {K}$$\end{document} if whenever P can be embedded into the ideal lattice IK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {I}K$$\end{document} of some K∈K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\in \mathcal {K}$$\end{document}, then P can be embedded into K. There is a rich theory of transferability for lattices. Here we introduce the analogous notion of MacNeille transferability, replacing the ideal lattice IK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {I}K$$\end{document} with the MacNeille completion K¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{K}$$\end{document}. Basic properties of MacNeille transferability are developed. Particular attention is paid to MacNeille transferability in the class of Heyting algebras where it relates to stable classes of Heyting algebras, and hence to stable intermediate logics.
引用
收藏
相关论文
共 50 条
  • [21] Expansions of Dually Pseudocomplemented Heyting Algebras
    Christopher J. Taylor
    Studia Logica, 2017, 105 : 817 - 841
  • [22] Expansions of Dually Pseudocomplemented Heyting Algebras
    Taylor, Christopher J.
    STUDIA LOGICA, 2017, 105 (04) : 817 - 841
  • [23] MacNeille Completions of D-Posets and Effect Algebras
    Zdenka Riečkanov´
    International Journal of Theoretical Physics, 2000, 39 : 859 - 869
  • [24] An exploration of weak Heyting algebras: Characterization and properties
    Perez-Gamez, Francisco
    Bejines, Carlos
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2025, 179
  • [25] Profinite completions and canonical extensions of Heyting algebras
    Bezhanishvili, Guram
    Gehrke, Mai
    Mines, Ray
    Morandi, Patrick J.
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2006, 23 (2-3): : 143 - 161
  • [26] Computable Heyting Algebras with Distinguished Atoms and Coatoms
    Bazhenov, Nikolay
    JOURNAL OF LOGIC LANGUAGE AND INFORMATION, 2023, 32 (01) : 3 - 18
  • [27] Profinite Completions and Canonical Extensions of Heyting Algebras
    Guram Bezhanishvili
    Mai Gehrke
    Ray Mines
    Patrick J. Morandi
    Order, 2006, 23 : 143 - 161
  • [28] Computable Heyting Algebras with Distinguished Atoms and Coatoms
    Nikolay Bazhenov
    Journal of Logic, Language and Information, 2023, 32 : 3 - 18
  • [29] Fatal Heyting Algebras and Forcing Persistent Sentences
    Leo Esakia
    Benedikt Löwe
    Studia Logica, 2012, 100 : 163 - 173
  • [30] Fatal Heyting Algebras and Forcing Persistent Sentences
    Esakia, Leo
    Lowe, Benedikt
    STUDIA LOGICA, 2012, 100 (1-2) : 163 - 173