MacNeille transferability and stable classes of Heyting algebras

被引:0
|
作者
Guram Bezhanishvili
John Harding
Julia Ilin
Frederik Möllerström Lauridsen
机构
[1] New Mexico State University,Department of Mathematical Science
[2] University of Amsterdam,Institute for Logic, Language and Computation
来源
Algebra universalis | 2018年 / 79卷
关键词
Transferability; MacNeille completion; Distributive lattice; Heyting algebra; 06D20; 06B23; 06E15;
D O I
暂无
中图分类号
学科分类号
摘要
A lattice P is transferable for a class of lattices K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {K}$$\end{document} if whenever P can be embedded into the ideal lattice IK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {I}K$$\end{document} of some K∈K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\in \mathcal {K}$$\end{document}, then P can be embedded into K. There is a rich theory of transferability for lattices. Here we introduce the analogous notion of MacNeille transferability, replacing the ideal lattice IK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {I}K$$\end{document} with the MacNeille completion K¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{K}$$\end{document}. Basic properties of MacNeille transferability are developed. Particular attention is paid to MacNeille transferability in the class of Heyting algebras where it relates to stable classes of Heyting algebras, and hence to stable intermediate logics.
引用
收藏
相关论文
共 50 条
  • [11] Counting weak Heyting algebras on finite distributive lattices
    Alizadeh, Majid
    Joharizadeh, Nima
    LOGIC JOURNAL OF THE IGPL, 2015, 23 (02) : 247 - 258
  • [12] Profiniteness and representability of spectra of Heyting algebras
    Bezhanishvili, G.
    Bezhanishvili, N.
    Moraschini, T.
    Stronkowski, M.
    ADVANCES IN MATHEMATICS, 2021, 391
  • [13] MacNeille completion of centers and centers of MacNeille completions of lattice effect algebras: Generic scheme behind
    Niederle, Josef
    Paseka, Jan
    MATHEMATICA SLOVACA, 2012, 62 (06) : 1193 - 1208
  • [14] Characteristic Formulas of Partial Heyting Algebras
    Citkin, Alex
    LOGICA UNIVERSALIS, 2013, 7 (02) : 167 - 193
  • [15] Discrete dualities for Heyting algebras with operators
    Orlowska, Ewa
    Rewitzky, Ingrid
    FUNDAMENTA INFORMATICAE, 2007, 81 (1-3) : 275 - 295
  • [16] On Some Compatible Operations on Heyting Algebras
    Ertola Biraben, R. C.
    San Martin, H. J.
    STUDIA LOGICA, 2011, 98 (03) : 331 - 345
  • [17] Characterizations of near-Heyting algebras
    Gonzalez, Luciano J.
    Lattanzi, Marina B.
    Calomino, Ismael
    Celani, Sergio A.
    EUROPEAN JOURNAL OF MATHEMATICS, 2023, 9 (03)
  • [18] Epimorphism surjectivity in varieties of Heyting algebras
    Moraschini, T.
    Wannenburg, J. J.
    ANNALS OF PURE AND APPLIED LOGIC, 2020, 171 (09)
  • [19] On Some Compatible Operations on Heyting Algebras
    Rodolfo Cristian Ertola Biraben
    Hernán Javier San Martín
    Studia Logica, 2011, 98 : 331 - 345
  • [20] Characterizations of near-Heyting algebras
    Luciano J. González
    Marina B. Lattanzi
    Ismael Calomino
    Sergio A. Celani
    European Journal of Mathematics, 2023, 9