MacNeille transferability and stable classes of Heyting algebras

被引:0
|
作者
Guram Bezhanishvili
John Harding
Julia Ilin
Frederik Möllerström Lauridsen
机构
[1] New Mexico State University,Department of Mathematical Science
[2] University of Amsterdam,Institute for Logic, Language and Computation
来源
Algebra universalis | 2018年 / 79卷
关键词
Transferability; MacNeille completion; Distributive lattice; Heyting algebra; 06D20; 06B23; 06E15;
D O I
暂无
中图分类号
学科分类号
摘要
A lattice P is transferable for a class of lattices K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {K}$$\end{document} if whenever P can be embedded into the ideal lattice IK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {I}K$$\end{document} of some K∈K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\in \mathcal {K}$$\end{document}, then P can be embedded into K. There is a rich theory of transferability for lattices. Here we introduce the analogous notion of MacNeille transferability, replacing the ideal lattice IK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {I}K$$\end{document} with the MacNeille completion K¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{K}$$\end{document}. Basic properties of MacNeille transferability are developed. Particular attention is paid to MacNeille transferability in the class of Heyting algebras where it relates to stable classes of Heyting algebras, and hence to stable intermediate logics.
引用
收藏
相关论文
共 50 条
  • [1] MacNeille transferability and stable classes of Heyting algebras
    Bezhanishvili, Guram
    Harding, John
    Ilin, Julia
    Lauridsen, Frederik Mollerstrom
    ALGEBRA UNIVERSALIS, 2018, 79 (03)
  • [2] Hyper-MacNeille Completions of Heyting Algebras
    J. Harding
    F. M. Lauridsen
    Studia Logica, 2021, 109 : 1119 - 1157
  • [3] Hyper-MacNeille Completions of Heyting Algebras
    Harding, J.
    Lauridsen, F. M.
    STUDIA LOGICA, 2021, 109 (05) : 1119 - 1157
  • [4] PROFINITE HEYTING ALGEBRAS AND PROFINITE COMPLETIONS OF HEYTING ALGEBRAS
    Bezhanishvili, Guram
    Morandi, Patrick J.
    GEORGIAN MATHEMATICAL JOURNAL, 2009, 16 (01) : 29 - 47
  • [5] ON HEYTING ALGEBRAS AND DUAL BCK-ALGEBRAS
    Yon, Y. H.
    Kim, K. H.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2012, 38 (01) : 159 - 168
  • [6] Effective categoricity for distributive lattices and Heyting algebras
    Bazhenov N.A.
    Lobachevskii Journal of Mathematics, 2017, 38 (4) : 600 - 614
  • [7] MV and Heyting effect algebras
    Foulis, DJ
    FOUNDATIONS OF PHYSICS, 2000, 30 (10) : 1687 - 1706
  • [8] Endomorphisms of complete heyting algebras
    A. Pultr
    J. Sichler
    Semigroup Forum, 1997, 54 : 364 - 374
  • [9] MV and Heyting Effect Algebras
    D. J. Foulis
    Foundations of Physics, 2000, 30 : 1687 - 1706
  • [10] Partial algebras and complexity of satisfiability and universal theory for distributive lattices, boolean algebras and Heyting algebras
    van Alten, C. J.
    THEORETICAL COMPUTER SCIENCE, 2013, 501 : 82 - 92