The Big Bang is a Coordinate Singularity for k=-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k = -1$$\end{document} Inflationary FLRW Spacetimes

被引:0
作者
Eric Ling
机构
[1] KTH Royal Institute of Technology,Department of Mathematics
关键词
Big bang; Milne; Singularity; Dark energy; Dark matter; Antimatter;
D O I
10.1007/s10701-020-00335-7
中图分类号
学科分类号
摘要
We show that the big bang is a coordinate singularity for a large class of k=-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k = -1$$\end{document} inflationary FLRW spacetimes which we have dubbed ‘Milne-like.’ By introducing a new set of coordinates, the big bang appears as a past boundary of the universe where the metric is no longer degenerate—a result which has already been investigated in the context of vacuum decay (Coleman and De Luccia in Phys Rev D 21:3305–3315, 1980). We generalize their results and approach the problem from a more mathematical perspective. Similar to how investigating the geometrical properties of the r=2m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r = 2m$$\end{document} event horizon in Schwarzschild led to a better understanding of black holes, we believe that investigating the geometrical properties of the big bang coordinate singularity for Milne-like spacetimes could lead to a better understanding of cosmology. We show how the mathematics of these spacetimes may help illuminate certain issues associated with dark energy, dark matter, and the universe’s missing antimatter.
引用
收藏
页码:385 / 428
页数:43
相关论文
共 51 条
[11]  
Boyle L(2017)Some remarks on the Ann. Henri Poincaré 18 3427-L16
[12]  
Finn K(1981)-inextendibility of spacetimes Phys. Rev. D 23 347-1161
[13]  
Turok N(2000)Inflationary universe: a possible solution to the horizon and flatness problems Classical Quantum Gravity 17 L9-3659
[14]  
Bray HL(2004)Scalar fields as dark matter in spiral galaxies Phys. Rev. D 69 124033-1286
[15]  
Chruściel PT(2000)Evolution of the schrödinger-newton system for a self-gravitating scalar field Phys. Rev. Lett. 85 1158-378
[16]  
Cortier J(2017)Fuzzy cold dark matter: the wave properties of ultralight particles Phys. Rev. D 95 043541-403
[17]  
Chruściel PT(1994)Ultralight scalars as cosmological dark matter Phys. Rev. D 50 3655-3654
[18]  
Delay E(2019)Late-time phase transition and the galactic halo as a bose liquid. ii. The effect of visible matter Gen. Relat. Gravit. 51 113-204
[19]  
Galloway GJ(2012)Cosmological singularities from high matter density without global topological assumptions J. Phys. 378 012012-undefined
[20]  
Howard R(2007)A brief review of the scalar field dark matter model Gen. Relat. Gravit. 39 1279-undefined